y=kx b与反比例函数y=k x交于a.b两点,a(2.3)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:51:38
∵横坐标是12和-1,∴y=212=4,y=2−1,∴交点为(12,4),(-1,-2),(2分)由12k+b=4−k+b=−2解得b=2k=4(1分)∴一次函数解析式为y=4x+2.(1分)
k>0时,函数y=kx与y=kx同在一、三象限,B选项符合;k<0时,函数y=kx与y=kx同在二、四象限,无此选项.故选B.
∵反比例函数y=kx的图象经过点(-2,2)和(-1,a)两点,∴2=k2a=k−1,解得,k=4a=−4,∴ak+k+a+1=-16+4-4+1=-15;故答案是:-15.
∵正比例函数y=x的图象过一、三象限,且反比例函数y=kx(k≠0)与正比例函数y=x的图象有交点,∴反比例函数y=kx位于一、三象限,∴k>0.即k的范围是k>0.故答案为k>0.
手打,会很慢,(1)点D为一次函数y=kx+3上的点,并交于y正轴设点D(0,y)代入y=kx+3得y=3∴D(0,3)(2)∵OC:CA=1:2∴OC:OA=1:3∵PB⊥y轴∴BP=OA△DOC∽
∵点A(m,1)在反比例函数y=kx(k≠0)的图象上,∴k=m×1=m,∵点A(m,1)在正比例函数y=2kx的图象上,∴1=2km,即2m2=1,解得m=±22,即k=±22.
将A(a,-1),B(-2,b)分别代入y=kx得:ak=-1,-2k=b,即a=-1k,b=-2k,分别代入反比例函数y=mx得:-1=ma,b=m−2,即m=-a=-2b<0,∴a=2b>0,即-
若一次函数y=x+b与反比例函数y=kx图象,在第二象限内有两个交点,则说明反比例函数y=kx的图象必然在二、四象限,所以k<0;因为一次函数y=x+b与反比例函数y=kx图象,在第二象限内有两个交点
当k>0,y=kx+b在R是增函数,当k<0,y=kx+b在R是减函数;当k>0,y=kx在(-∞,0)、(0,+∞)上是减函数,当k<0,y=kx在(-∞,0)、(0,+∞)上是增函数;当a>0,二
由反比例函数的性质可知,y=1x的图象在第一、三象限,∴当一次函数y=kx+1与反比例函数图象无交点时,k<0,解方程组y=kx+1y=1x,得kx2+x-1=0,当两函数图象没有公共点时,△<0,即
设A(a,-1),B(2,b),将这两点代入两解析式,−1= mab= m2−1=ak+2b=2k+2解得:m=−2k=− 32或m=6k=12;∴这两个解析式为y=−2
依题意可得-k=4-kx,解得k=2.在将k=2分别代入两个函数中可得y=2xy=2x,解方程组得x1=1y2=2和x2=-1y2=-2.所以交点为(1,2)和(-1,-2).故答案为:(1,2)和(
∵反比例函数y=kx经过(-1,2),∴k=-1×2=-2<0,∴一次函数解析式为y=2x+2,根据k、b的值得出图象经过一、二三、象限,不过第四象限.故答案为:四.
(1)设一次函数的解析式为y=kx+b,当x=3时,y=2,即A(3,2);当y=-3时,x=-2,即B(-2,-3).把点A,B分别代入y=kx+b得,3k+b=2,-2k+b=-3,联立方程组解得
根据题意得到−2k+b=3k−2=3,解得k=−6b=−9,因而这两个函数的解析式是y=-6x-9和y=-6x.
(1)∵点A的横坐标为1,点B的纵坐标为-3,∴点A在第一象限,点B在第三象限,∴k>0,把点B的纵坐标为-3分别代入两函数的解析式得kx=−3kx=−3,解得x=±1(舍去正号),∴k=3.故正比例
∵A(-2,1)在反比例函数y=mx的图象上,∴1=m−2,解得m=-2.∴反比例函数解析式为y=−2x,∵B(1,n)在反比例函数h上,∴n=-2.故答案为:-2.
首先算出一次函数的解析式(将P点带入y=kx+2),算出k=1,y=x+2.因为一次函数与反比例函数图象有交点,且在第三象限,那么Q点的坐标横坐标纵坐标都是负的.那么带公式x+2=3\x算出X1=1(
由题意得b=a+2b=kaa2+b2=100解得a1=6b1=8k=48,a2=−8b2=−6k=48.故a=6,b=8或a=-8,b=-6,反比例函数的解析式为y=48x.
把A(-2,4)代入反比例函数解析式求的K=-8,y=-8/x.把B(-4,y)代入上式求的B(-4,2),把A,B两点代入直线y=kx+b,中可以求出直线方程,用点到直线距离公式算出原点到直线的距离