y=f(arctanx)是否有渐近线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:03:28
y=f(arctanx)是否有渐近线
设函数f(x)=x-2arctanx,求函数f(x)的单调区间和极值,求曲线y=f(x)的凹凸区间和拐点

对函数求导,令导函数值等于0,求出极值(其中arctanx求导=1/1+x22是平方);二次求导,令导函数等于0,求出拐点,导函数值大于0,凹,小于0,凸

y=arctanx,求y'

y'=1/(1+x²)

求y''+arctanx=0通解

∵y''+arctanx=0==>y''=-arctanx==>y'=-∫arctanxdx=(1/2)ln(1+x^2)-xarctanx+C1*(应用分部积分法,C1*是常数)∴y=∫[(1/2)

证明恒等式arctanx+arccotx=π/2 , f(x) = arctanx+arccotx, 则有f'(x) =

那个f'(x)就相当于导数,倒数为零就意味着f(x)的图像为一条水平线,即f(x)为一常数,所以无论是谁都得TT/2

设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0

记g(x)=f(x^2+sin^2x)+f(arctanx)=yg'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)dy/dx|x=0,即g'(0)代入得

y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy

y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy两边对x求导:dy/dx=f'[(x-1)/(x+1)]*2/(x+1)^2=arctan[(x-1)/(x+1)]

y=arctanx,当0

[kpi,kpi+pi/4](k属于Z)再问:难道不是0

y=1+arctanx 的有界性

在定义反正切函数时,规定值域为(-pi/2,pi/2)因为一个函数有反函数的充分必要条件是这个函数是一一映射.

设f x 为可导函数,y=f^2(x+arctanx),求dy/dx

令u=x+arctanx,则u'=1+1/(1+x^2)则y=f^2(u)dy/dx=2f(u)f'(u)u'=2f(u)f'(u)[1+1/(x+x^2)]

怎样证明y=1/arctanx 是否为有界函数?

当x=0时,arctanx为0,其倒数∞,所以y为∞,所以无界.

证明y=arctanx/x*x+1为有界函数~

y=arctanx/x*x+1为有界函数因为|arctanx|

若F(x)是f(x)的原函数,则积分f(arctanx)_____dx=F(arctanx)+c

f(arctanx)d(arctanx)=F(arctanx)+cf(arctanx)[1/(1+x^2)]dx=F(arctanx)+c

Y=arctanx的奇偶性

f(x)=arctanxf(-x)=arctan(-x)=-arctanx=-f(x)所以,函数为奇函数判断函数奇偶性的基本就是判断f(x)与f(-x)是相等(偶函数)、相反(奇函数)、还是没有特定关

函数f(x)=tan(arctanx)与函数f(x)=sin(arcsinx)是否为同一个函数

f(x)=tan(arctanx)=tanxf(x)=sin(arcsinx)=sinx题目相当于问tanx和sinx是否为同一函数当然不是啦

关于周期函数 y=sinx,是否有f(x+T/2)=-f(x)?怎么证明?

T/2=π代入f(x+T/2)=sin(x+π)由诱导公式得sin(x+π)=-sinx=-f(x)得证

导数问题f(x)=arctanx

泰勒公式求arctanx(x)=x-1/3*x^3+1/5*x^5-1/7*x^7+1/9*x^9...麦克劳林展开n阶导数是(-1)^(n-1)*1/(2n-1)*x^(2n-1)所以将t=n,t=

已知f(x)=(arctanx)^2,则f '(x)=?

f'(x)=2(arctanx)*1/(1+x^2)

已知 f(x)=arctanx; 如何推导f'(x);

不用推导,直接就是公式啊,=1/(1+x^2)

求极限 f(x)=arctanx/x

上下分别求导,arctanx求导=1/(1+x²),分母求导为1,所以f(x)=arctanx/x的极限就等于1/(1+x²)的极限,当x趋于无穷大时1/(1+x²)趋于