y=f(arctanx)是否有渐近线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:03:28
对函数求导,令导函数值等于0,求出极值(其中arctanx求导=1/1+x22是平方);二次求导,令导函数等于0,求出拐点,导函数值大于0,凹,小于0,凸
y'=1/(1+x²)
∵y''+arctanx=0==>y''=-arctanx==>y'=-∫arctanxdx=(1/2)ln(1+x^2)-xarctanx+C1*(应用分部积分法,C1*是常数)∴y=∫[(1/2)
那个f'(x)就相当于导数,倒数为零就意味着f(x)的图像为一条水平线,即f(x)为一常数,所以无论是谁都得TT/2
记g(x)=f(x^2+sin^2x)+f(arctanx)=yg'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)dy/dx|x=0,即g'(0)代入得
y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy两边对x求导:dy/dx=f'[(x-1)/(x+1)]*2/(x+1)^2=arctan[(x-1)/(x+1)]
[kpi,kpi+pi/4](k属于Z)再问:难道不是0
在定义反正切函数时,规定值域为(-pi/2,pi/2)因为一个函数有反函数的充分必要条件是这个函数是一一映射.
令u=x+arctanx,则u'=1+1/(1+x^2)则y=f^2(u)dy/dx=2f(u)f'(u)u'=2f(u)f'(u)[1+1/(x+x^2)]
当x=0时,arctanx为0,其倒数∞,所以y为∞,所以无界.
y=arctanx/x*x+1为有界函数因为|arctanx|
f(arctanx)d(arctanx)=F(arctanx)+cf(arctanx)[1/(1+x^2)]dx=F(arctanx)+c
f(x)=arctanxf(-x)=arctan(-x)=-arctanx=-f(x)所以,函数为奇函数判断函数奇偶性的基本就是判断f(x)与f(-x)是相等(偶函数)、相反(奇函数)、还是没有特定关
f(x)=tan(arctanx)=tanxf(x)=sin(arcsinx)=sinx题目相当于问tanx和sinx是否为同一函数当然不是啦
T/2=π代入f(x+T/2)=sin(x+π)由诱导公式得sin(x+π)=-sinx=-f(x)得证
泰勒公式求arctanx(x)=x-1/3*x^3+1/5*x^5-1/7*x^7+1/9*x^9...麦克劳林展开n阶导数是(-1)^(n-1)*1/(2n-1)*x^(2n-1)所以将t=n,t=
y'=1/(1+x^2)
f'(x)=2(arctanx)*1/(1+x^2)
不用推导,直接就是公式啊,=1/(1+x^2)
上下分别求导,arctanx求导=1/(1+x²),分母求导为1,所以f(x)=arctanx/x的极限就等于1/(1+x²)的极限,当x趋于无穷大时1/(1+x²)趋于