y=e^x与y=e^-x,直线x=1围成的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:58:42
y=e^x与y=e^-x,直线x=1围成的面积
y=e^(-x)求导

y导数=-e^(-x)

y"-y=e^x的通解

∵y"-y=0的特征方程是r²-1=0,则r=±1∴y"-y=0的通解是y=C1e^x+C2e^(-x)(C1,C2是积分常数)∵设原方程的一个解为y=Axe^x代入原方程得2Ae^x=e^

[e^(x+y)-e^x]dx+[e^(x+y)-e^y]dy=0求通解

全微分方程通解为(e^x-1)(e^y-1)+c

协方差公式Cov(X,Y)=E(((X-E(X))(Y-E(Y)))即Cov(X,Y)=E(XY)-E(X)E(Y)中

.你要知道随机变量{X,Y}的联合分布的啊,比如是某个概率测度\mu(x,y)那么E(XY)=\intxyd\mu(x,y)

y=(e^x-e^-x)/2

令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²

求与函数y=e^2x-2e^x+1的曲线关于直线y=x对称的曲线的函数解析式

y=e^2x-2e^x+1=(e^x-1)^2x>=0e^x-1=ye^x=y+1x=ln(y+1)y=ln(x+1)x=0时,是y=ln(x+1)当x

y''-y=e^|x|的通解

解微分方程的时候不要在意这种在常数上的一点点区别,这样来想,你是解得y=c1*e^x+c2*e^(-x)+1/2*x*e^x那么如果令c1=d1-1/2,c2=d2+1/2,就得到y=(d1-1/2)

y'-2y=(e^x)-x

首先求齐次方程通y'-2y=0特征方程:x-2=0x=2为特征根∴y=Ce^(2x)设方程的一个特解为y=Ae^x+ax+b代入方程:Ae^x+a-2Ae^x-2ax-2b=-Ae^x-2ax+a-2

y’+y=e^-x的通解

对应齐次方程是y'+y=0其通解是y=Ce^(-x),C是任意常数设方程的一个特解是y*=axe^(-x),代入方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)ae^(-x)=e

曲线y=ln绝对值x 与直线x=1/e,x=e及y=0所围成平面图形的面积A=

因为围成的区域内,x>0,所以y=lnx.面积在x=1处分成两段,则有:A=∫(1/e,1)(0-lnx)dx+∫(1,e)(lnx-0)dx=-∫(1/e,1)lnxdx+∫(1,e)lnxdx=(

曲线y等于e的x次方,y等于e的等负x次方与直线x=1围成的面积

#include#includeintmain(intargc,char**argv){\x05constdoubledelta=0.0001;\x05constdoublefinal=1;\x05d

y=x+e^x,x

case

统计学证明E(X-Y)=E(X)-E(Y)

这是一个二维的随机变量,不知道是连续或是离散的不妨设为离散的,(对于连续的只要把求和符号换成积分符号就行啦!)设(X,Y)的联合分布列和边际分布列为:P(X=ai,Y=bj)=pij,i,j=1,2,

E[E(X|Y)]=E(x) 怎么证明

题目是不是e^(e^(x/y))=e^x再问:亲是期望啊现在已经会了多谢再答:好的,恭喜你!

y'e^(x-y)=1通解?

y'e^(x-y)=1即dy/e^y=dx/e^x等式两边积分得到e^(-y)=e^(-x)+C,C为常数所以方程的通解为:y=-ln|e^(-x)+C|,C为常数

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

y=x^e+e^x+ln x+e^e,求Y'

y`=ex^(e-1)+e^x+1/x

E[(X-E(X))*(Y-E(Y))]=E(XY)-E(X)*E(Y)这个公式怎么证明?

要注意E(kX)=kE(X),k是常数E[(X-E(X))*(Y-E(Y))]=E[XY-XE(Y)-YE(X)+E(X)E(Y)]=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)=

求y'-y=e^x通解,

y'-y=0-->y=e^xy'-y=e^x-->y=(1+x)e^x通解