y=e^3x 求d^2y dx^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:33:03
我说说我的思路,但不一定对.1.这个方程很复杂.观察由方程的左边同时出现了dy/dx,dx/dy,并等式右边是一个常数.为了保证等式左边两项的平方和等于一个常数,则等式左边两项必定每一项都为一个常数.
X,Y是两个相互独立的随机变量,则D(X-Y)=D(X)+(-1)^2*D(Y)=5D(X)=E(X^2)-[E(X)]^2E(X^2)=2+1=3同理E(Y^2)=3+1=4而cov(X,Y)=0,
dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d
E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?
E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+
e^ydx+(xe^y+2y)dy=d(xe^y)+d(y^2)=0------全微分积分可得xe^y+y^2=0
ydx-xdy=(x²+y²)dxy-x•dy/dx=x²+y²y'=y/x-y²/x-x(令y=-xv,y'=-(xv'+v)=-xv'
少半边括号,是否应该是:[1+e^(-x/y)]ydx+(y-x)dy=0移项,同除以ydy,可得[1+e^(-x/y)]dx/dy=-(1-x/y)(1)令x/y=p,则x=py;dx/dy=dp/
x^2ydx-(x^3+y^3)dy=0变形:dx/dy=x/y+(y/x)^2设x/y=u,x=yudx/dy=u+ydu/dyu+ydu/dy=u+(1/u)^2ydu/dy=(1/u)^2u^2
由于不是单连通区域,因此不能说积分与路径无关,对于任意的两条路径,要看原点是否在这两条路径所围区域内,如果原点不在其内,则与路径无关;如果原点在这个区域内,积分与路径是有关的.你所说的x²+
D(-y)=(-1)^2*D(y)=3,E(-y)=-E(y)=-1,E(-xy)=-E(xy)=-E(x)E(y)=-1,D(x-y)=D(x)+D(-y)+2*{E(-xy)-E(x)E(y)}=
是电脑编程语言、表示“几次方”、如5^6.表示5的6次方、再问:i-3j+5k是怎么得的
2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5
定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=
ydx-xdy+(y^2)xdx=0y-xdy/dx=-(y^2)x(y-xy')/y^2=-x(x/y)'=-x两边积分得x/y=-x^2/2+C
因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=
满足格林公式如果PQ相等是与积分路径无关只要L闭封,P.Q在D中有一阶连续偏导数,且D的边界取正方向就可以用格林公式
再问:xΪɶŪ��2cos再答:参数方程嘛再问:==��Ϊʲô����3cos4cos5cos��Ҳ�Dz���̰�再答:根据圆C设的啊,不用管那个路径吗?半径是2,所以设2cost,2sint凡是(x