y=cos√x-2求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:10:46
y=cos√x-2求dy
y=(1+x^4)^cos x,求dy

(1+X4)COSx先求导数再乘以dx就行了

设y=cos^2(x+1),求dy

楼上的少写了“-”和“dx”吧dy=2cos(x+1)•[-sin(x+1)]dx=-sin2(x+1)dx

y= (cos x)^x,求dy/dx

最好的办法是求对数:lny=xlncosx,两边求导数得:y'/y=lncosx-x(sinx/cosx)=lncosx-xtanx所以:y'=y(lncosx-xtanx)=(cosx)^x(lnc

设函数y=e^2x+cos x求倒数y'与微分dy

再答:再问:dy再答:����ѽ��再问:΢��dy再问:û�ĵ�再答:

e^(-y^2)+cos(x^2)=0 求dy/dx

e^(-y^2)=-cos(x^2)第一次求导后:e^(-y^2)*(-2y)*(dy/dx)=2x*sin(x^2)dy/dx=-[x*sin(x^2)]/[y*e^(-y^2)]

函数y=cos ln(x^2+e^-x) ,求dy

解y=cos[ln(x²+e^(-x)]y'={cos[ln(x²+e^(-x)]}'=-sin[ln(x²+e^(-x)][ln(x²+e^(-x)]'(x&

ysinx+cos(x-y)=0,求dy/dx|(x=π/2)

两边对x求导:dy/dxsinx+ycosx-sin(x-y)(1-dy/dx)=0,将x=π/2带入已知方程得到y,再把x、y带入上式求得结果再问:x=π/2带入已知方程得到y。。。我算不出这个y

设y=cos(2x^2+x+1) 求dy/dx. 过程

y=cos(2x^2+x+1)→dy/dx=-sin(2x^2+x+1)·(2x^2+x+1)'∴dy/dx=-(4x+1)sin(2x^2+x+1).

ysinx-cos(x+y)=0,求 dy/dx

应用复合函数求导方法,y′sinx+ycosx+(1+y′)sin(x+y)=0,(sinx+sin(x+y))y′+ycosx+sin(x+y)=0,y′=-(ycosx+sin(x+y))/(si

cos(x+y)+y=1 求dy/dx

我算的结果和你的一样,也是y'=sin(x+y)/1-sin(x+y)应该是书上写错了.在说xsin(x+y)中的x从何而来?找不到它的来源啊.不管是对cos(),还是对y求导都不会出现xsin()这

设Y=COS根号X +2的X 平方,求DY

正确答案:【-sin根号x/(2根号x)+2的x次方ln2】dx

设y=cos根号下x,减去e的负2x方,求dy

dy=[-sin(√x)*1/2*x^(-1/2)-e^(-2x)*(-2)]dx=[1/2sin(√x)x^(-1/2)+2e^(-2x)]dx

已知y=cos^4(2x+π/3),求dy/dx

y'=4*cos^3(2x+π/3)*[cos(2x+π/3)]'*(2x+π/3)'=-8*cos^3(2x+π/3)*sin(2x+π/3)

设y=cos平方x-x5次方,求dy

dy/dx=-2cosxsinx-5x的4次方所以dy=(-sin2x-5x的4次方)dx

设y=cos√x - e^(-2x) 求dy,

dy=cos√xdx-e^(-2x)dx=sin√x*√xdx-e^(-2x)(-2x)dx=[√x(sin√x)/2x+2e^(-2x)]dx很高兴为您解答,【数学之美】团队为您答题.请点击下面的【

设y=cos√x+2∧x,求dy

y=cos√x+2^xy'=-sin√x/(2√x)+ln2*2^xdy=[-sin√x/(2√x)+ln2*2^x]dx

对于x=cos(y/x),求dy/dx.

∵x=cos(y/x)==>1=-sin(y/x)*(xy'-y)/x^2(等式两端对x求导)==>xy'-y=-x^2/sin(y/x)==>xy'=y-x^2/sin(y/x)==>y'=y/x-

ysin3x-cos(y-x)=5 y=f(x) 求dy/dx

两边取导数得:[ysin3x-cos(y-x)]`=0即:y`sin3x+3ycos3x-sin(y-x)(y`-1)=0即:y`sin3x-y`sin(y-x)=sin(y-x)-3xcos3x所以

y=x^2x,求dy

y=x^(2x)lny=2xlnx(1/y)dy=(2+2lnx)dxdy=x^(2x).(2+2lnx)dx

由方程ysinx-cos(x+y)=0确定隐函数y(x),求dy|(0,π/2)

两边求导:y'sinx+ycosx+sin(x+y)*(1+y')=0令x=0,y=π/2:π/2+1+y'=0y'=-(π/2+1)dy=-(π/2+1)dx