y=cos(xy)-x的dy dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:02:52
cos(xy)=x+y两边分别对x求导:-sin(xy)*(y+xy′)=1+y′y′=-[1+ysin(xy)]/[xsin(xy)+1]=========左边对cos求导:-sin(xy)再对xy
两端对x求导得e^(x+y)*(x+y)'-sin(xy)*(xy)'=0e^(x+y)*(1+y')-sin(xy)*(y+y')=0解得dy/dx=y'=[e^(x+y)-ysin(xy)]/[s
我来试试吧...z=e^xy*cos(x+y)Z'x=ye^xycos(x+y)-e^xysin(x+y)Z'y=xe^xycos(x+y)-e^xysin(x+y)故dZ=[ye^xycos(x+y
x-xy=8(1)xy-y=-9(2)则有(1)-(2):X-XY-XY+Y=X+Y-2XY=8-(-9)=17
隐函数求导设z=x²y²-cos(xy)dy/dx=-(δz/δx)/(δz/δy)=-(2xy²+ysin(xy))/(2x²y+xsin(xy))=-y/x
-sin(xy)[ydx+xdy]=2xy^2*dx+x^2*2ydy-sin(xy)ydx-sin(xy)xdy=2xy^2*dx+2x^2*ydy-2x^2*ydy-sin(xy)xdy=2xy^
cos(xy)-x^2·y=1两边对x求导-sin(xy)*(y+xy')-2xy-x^2y'=0===>x=1,y=0,y'=0-cos(xy)(y+xy')^2-(y'+y'+xy")-2y-2x
两边对x求导:-(y+xy')sin(xy)=2xy^2+2x^2yy'解得:y'=-[ysin(xy)+2xy^2]/[2x^2y+xsin(xy)]所以dy=-[ysin(xy)+2xy^2]/[
对方程两边同时求导得,﹣﹙y+xy′﹚sin﹙xy﹚+e^y+﹙x+1﹚y′e^y=0令x=0则方程cos(xy)+(x+1)*e^y=2为1+e^y=2,得y=0,即切点坐标为﹙0,0﹚将﹙0,0﹚
x=0时,代入原方程得:e^y-cos0=0,得:y(0)=0对x求导:e^(x+y)*(1+y')+sin(xy)*(y+xy')=0因此y'=-[ysin(xy)+e^(x+y)]/[e^(x+y
沿y=x趋于原点时,极限为lim(1-cos(x^2+x))/2x^3趋于无穷再问:这样回答老师打了问号,是不是最后的极限不能出现x呀?再答:不是不能出现x,你可以写得再详细一点,用洛必达法则或等价替
f(x,y)=e^(x+y)+cos(xy)=0 //: 利用隐函数存在定理:f 'x(x,y)=e^
xy'+y+sin(πy)πy'=0y'=-y/[x+πsin(πy)]
令y=xuy'=u+xu'代入原方程:[x(u+xu')-xu]cos²u+x=0xu'cos²u+1=0cos²udu=-dx/x(1+cos2u)du=-2dx/x积
cos(xy)=x-y,隐函数,两边求导-sin(xy)*(xy)'=1-y'-sin(xy)*(y+xy')=1-y'-ysin(xy)-xcos(xy)*y'=1-y'y'[1-xsin(xy)]
对两边取对数:xy+3lny=lncos(x-y)两边同时对x求导:y+xy'+y'*3/y=-tan(x-y)*(1-y')整理得:y'=tan(x-y)+y/tan(x-y)-x-3/y不知道对不
x=0时,代入方程得:1+1=y,得:y=2对x求导:(y+xy')e^xy-sin(xy)*(y+xy')=y'将x=0,y=2代入得:2=y'故dy(0)=2dx
∂z/∂x=yeˆ(xy)-sin(x+y)x=1,y=0时,∂z/∂x=-sin1∂z/∂y=xeˆ(xy