Y=aX b,求XY的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:34:02
直观的根据面积来算,x=y,x=2y,x=3y,都是直线,是无具体面积的而XY是在一个具体的区域内,故为0可以算一下XY的概率,来比记忆加以理解
用联合密度的方法去求,算z和x的联合密度,再对其密度关于x积分,就可以了
(1)关于x的边际密度函数Px(x):当0≤x≤1时Px(x)=∫f(x,y)dy,关于y从-∞积到+∞=∫(2-x-y)dy,关于y从0积到1其中原函数为:(2*y-x*y-y²/2)Px
由于不独立,所以必须知道联合密度才能求.
设x服从[a,b]的均匀分布f(x)=1/(b-a),x∈[a,b]0,其他设y服从[c,d]的均匀分布f(y)=1/(d-c),y∈[c,d]0,其他所以f(xy)=f(x)f(y)=1/[(b-a
思路:1.求概率密度的问题,首先要想到要通过求分布函数来解.2.分布函数F(z)=P(Z
F(z)=P{Z0所以f(z)=F'(z)=2e^(-2z),z>00,其他再问:第四步中,y的积分范围应该是0~2z吧,这道题不能用卷积运算吗再答:对,是,晕了,呵呵。F(z)=P{Z2z-y)e^
易知z0)Fz(z)=∫[0->+∞]dx∫[0->z/x]xe^(-x(1+y))dy=∫[0->+∞]xe^(-x)-xe^(-(z+x))dx=-xe^(-x)|[0->+∞]-∫[0->+∞]
fX(x)=∫(-∞,+∞)f(x,y)dy=∫(x,1)8xydy=4x(1-x²),0≤x≤1,其他为0fY(y)=∫(-∞,+∞)f(x,y)dx=∫(0,y)8xydx=4y
fx(x)=∫(0~1/Γ3)24xydy=12xy²](0~1/Γ3)=4xP(x
对int是什么?再问:int������再答:�Ǿ�������
如图所示,概率基础题,建议多看几个例题,动手画画图就明白了
求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x
这题难度较大,除了要知道概率密度的求法,在计算当中还要知道反三角函数的一些知识,还有含参变量积分的求导方法,也就是说除了概率知识,对于高等数学还要有一定的基础.解答如下图:
关于X的边缘概率密度为∫[0,x]f(x,y)dy=∫[0,x]8xydy=4xy^2[0,x]=4x^3再问:不好意思,这个知识点已经忘得差不多了,还是看不懂。。。再答:求关于X的边缘概率密度,就是
∫∫be^[-(x+y)]dxdy=1,可得b=e/(e-1)f(x)=∫be^[-(x+y)]dy=be^(-x),0
由f(x,y),得知:(X,Y)是二维正态分布,X与Y独立,X与Y的均值都是0,方差分别为(σ1)^2和(σ2)^2所以:Z=X-Y也是正态分布,均值为0,方差为:(σ1)^2+(σ2)^2你就按照一