y=arctanx-1/2ln(1 x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:31:29
y=arctanx-1/2ln(1 x)
极限X趋于0时arctanx-sinx/ln(1+x^3)=? 求详解

最后答案是负无穷,x取了平方,所以不用考虑x趋于0-还是0+

y=arctanx,求y'

y'=1/(1+x²)

将函数f(x)=1/4[ln(1+x)-ln(1-x)]+1/2arctanx-x展成x的幂级数

先整理:f(x)=1/4[ln(1+x)-ln(1-x)]+1/2arctanx-x=1/4ln[(1+x)/(1-x)]+1/2arctanx-x因1/4ln(1+x)/(1-x)=1/4×2(x+

y=1+arctanx 的有界性

在定义反正切函数时,规定值域为(-pi/2,pi/2)因为一个函数有反函数的充分必要条件是这个函数是一一映射.

求通解(1+x^2)y'+y=arctanx

∵(1+x^2)y'+y=arctanx==>[(1+x^2)y'+y]e^(arctanx)/(1+x^2)=arctanx*e^(arctanx)/(1+x^2)(等式两端同乘e^(arctanx

求极限(1/x2)ln(arctanx/x),

原式配个+1-1得到In{arctanx/x+1-1}/x2用等价无穷小arctanx-1/x3再洛必达(1/1+x2)-1/x3最后变成-1/3+3x2得到-1/3

当x趋近于0时 lim e^x+ln(1-x)-1/x-arctanx=?

答案没有错!原式=lim(x->0){[e^x+1/(x-1)]/[1-1/(1+x²)]}(0/0型极限,应用罗比达法则)=lim(x->0){(1+x²)*[e^x+1/(x-

3.设y=(1+x^2)arctanx,求y" ,y"/x=1 .

y'=2xarctanx+1y''=2arctanx+2x/(1+x^2)y''/x=1=π/2+1

(1+x^2)y'=arctanx,求微分方程,

(1+x^2)y'=arctanxy'=arctanx/(1+x^2)两边积分:y=∫arctanx/(1+x^2)dx=∫arctanxd(arctanx)=1/2(arctanx)^2+C

y=ln(arctanx),求y`及dy

y'=1/(1+x²)×反正切就是括号里的手机打不出来dy=y'dx手机答好麻烦.给分.

1.y=x arctanx - 1/2 ln(1+x^2) 求dy 2.y=tan(3x^2+1) 求y的导数即y' 3

1.dy={arctanx+x/(1+x^2)-1/2*[2x/(1+x^2)]}dx2.y'=(6x)sec^2(3x^2+1)3.f'(x)=2cos(a^x+1/x)*[-sin(a^x+1/x

求函数Z=arctanx除以y+ln根号下X平方加Y平方,求全微分

z=arctanx/y+ln√(x^2+y^2)编微分的符号打不出来,只有用d代替了dz/dx=1/(1+(x/y)^2)*1/y+1/√(x^2+y^2)*1/2√(x^2+y^2)*2x=y/(x

求极限(arctanx-arcsinx)/x*[ln(1+x^2)]^2 (x趋于0)

ln(1+x^2)在x趋于0的时候等价于x^2,所以分母x*[ln(1+x^2)]^2等价于x^5.此时分子分母同时求导,使用洛比达法则.分子(arctanx-arcsinx)求导为___1_____

求极限x趋向0, x * arctanx - (1/2)ln(1+x2)/x^2

你好!本题需要用到泰勒公式详解如图

求函数y=arctanX-ln(1+x2(的平方)) 的单调区间与极值.

y'=1/(1+x^2)-2x/(1+x^2)=(1-2x)/(1+x^2y'=0===>x=1/2∴x再问:这是准确的答案吗?再答:当然

求导数y=ln根号(1+x)/(1-x)-arctanx, 请写详细推导过程,谢

原式即y=0.5ln(1+x)-0.5ln(1-x)-arctanx所以y'=0.5/(1+x)+0.5/(1-x)-1/(1+x^2)=1/(1-x^2)-1/(1+x^2)=2x^2/(1-x^4

求微分 ①y=1+lnx/1-lnx ②y=1/2ln[(1+x)/(1-x)]-arctanx 证明恒等式:arcsi

求微分①y=(1+lnx)/(1-lnx)y’=[(1-lnx)/x+(1+lnx)/x]/(1-lnx)²=2/[x(1-lnx)²]②y=1/2ln[(1+x)/(1-x)]-