y=arccosx √(1-x^2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:01:23
y'=-2x*(arccosx)+(1-x^2)*(-1/√(1-x^2))=-2x*(arccosx)-(1-x^2)/√(1-x^2))=-2x*(arccosx)-√(1-x^2)
1.f(x)+f(-x)=2(arccosx+arccos-x)+arctanx+arctan-x-2pi=2pi+0-2pi=0,得证.2.arctanx+arctan1/y=arctan3tan(
设t=arccosx,则y=t+10t,0<t≤π.求导得,y′=1-10t2=t2−10t2<0,∴y在定义域0<t≤π.上是减函数,当t=π时,y取得最小值π+10π故答案为:π+10π
你给的是 lim(x→0)[x*arccosx-√(1-x²)]=0*(π/2)-1=-1.这怎么会是难题呢?估计原题不是这样的.
复合函数求导法:y=f(u),u=x^2arccox+tanxy'=f'(u)u'=f'(u)[2xarccosx-x^2/√(1-x^2)+(secx)^2]=f'(x^2arccosx+tanx)
令θ=arcsinx,∵x∈[-1,1],∴θ∈[-π/2,π/2],则sinθ=x,下面证明arccosx=π/2-θ即可(要证明两个角相等,需证明两个方面的内容:1º两个角的同名函数值相
f(x)=arcsinx+arccosx在[-1,1]连续,在(-1,1)可导,由拉格朗日中值定理一定在[-1,1]中找到一个c点使得f(c)=[f(1)-f(-1)]/(1-(-1))又这个式子可以
将x=1代入得ln(e+e)/(2+0)=ln(2*e)/2=(ln2+1)/2
lim(x->0)(xcotx-1/x^2)=lim(x->0)(cosx*(x/sinx)-1/x^2)lim(x->0)(x/sinx)=lim(x->0)1/(sinx/x)=1=-∞y=ln√
y=√(1-x²)*arccosxy'=[√(1-x²)]'arcsosx+√(1-x²)*(arccos)'=(1/2)*(1-x²)ˆ(-1/2)
y=ln√(1-x)^(e^x)/arccosxu=ln√(1-x)^(e^x)=ln(1-x)^[(1/2)e^x]u'=[1/(1-x)^{(1/2)(e^x)}].{((1/2)e^x)(1-x
1/(1+x^2)再答:1/(根号下1+x^2)再答:-1/(根号下1+x^2)
要证arcsinx+arccosx=π/2arcsinx=π/2-arccosx2边取正弦左边=sin(arcsinx)=x右边=sin(π/2-arccosx)=cos(arccosx)=x(利用了
大学生吧?这个问题在数学分析或者高等数学里面算是比较基础的问题了.用到的定理是原函数F(X)的反函数的导数为1/F'(X)定理证明首先要保证函数y=f(x)在包含a点的开区间I上严格单调且连续,如果这
证明恒等式;arcsinx+arccosx=π/2(-1≤x≤1)证明:设arcsinx=u,arccosx=v,(-1≤x≤1),则sinu=x,cosu=√[1-(sinu)^2]=√[1-x^2
令u=arcsinX,v=arccosX则sinu=cosv=X因为cosv=sin[(π/2)-v]=sinu所以(π/2)-v=uu+v=π/2即:arcsinX+arccosX=π/2,X∈[-
第二项符号似乎不对!I=∫(x^2*arccosx)dx=(1/3)∫arccosxdx^3=(1/3)x^3*arccosx+(1/3)∫x^3dx/√(1-x^2),令x=sint,则I1=∫x^
(arccosx)'=(π/2-arcsinx)'=-(arcsinX)'=-1/√(1-x^2)
全是反函数.所以原函数关于y=x对称就是反函数的图像了.例:arcsinx的图像就是sinx关于y=x对称后的图像.