y=3x4−−√3 4x3−−√ 的导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:12:23
y=3x4−−√3 4x3−−√ 的导数
已知函数f(x)=14x4−x3+x2+a(0<x≤6).

(1)f′(x)=x3-3x2+2x=0⇒x=0,1,2x(0,1)1(1,2)2(2,6)f′(x)>00<00>0f(x)增极大值14+a减极小值a增所以,f(x)在(0,1)上

X1=X2-X3-X4-2 3X2=3X3+X4+3 这里的自由未知量是X1 X2 X3 X4 X5之中哪些?

继续化简,把第二个方程代入第一个方程,x1与x2都用x3,x4表示,所以x3,x4可以作为自由未知量.还有其他情形

求线性方程组 x2-x3-x4=0 x1+x2-x3+3x4=1 x1-x2+x3+5x4=-1 x1+2x2-2x3+

k,f为何值是方程组无解,解唯一,有无穷多解?在有解是,求出全部解.k≠-2时,方程组有唯一解.当k=-2时,r4+3r3100400

y x1 x2 x3 x4

x=[ones(13,1),x1,x2,x3,x4];[b,bint,r,rint,stats]=regress(y,x);b,bint,stats

解方程组X2+X3+X4=1 X1+X2+X3=5 X3+X4+X5=-5 X4+X5+X1=-3 X5+X1+X2=2

5式相加,3(x1+x2+x3+x4+x5)=1+5-5-3+2=0所以x1+x2+x3+x4+x5=0X1+X2+X3=5,X4+X5+X1=-3,两式相加:X1+(X1+X2+X3+X4+X5)=

已知函数f(x)=14x4+x3−92x2+cx有三个极值点.

(I)因为函数f(x)=14x4+x3−92x2+cx有三个极值点,所以f'(x)=x3+3x2-9x+c=0有三个互异的实根.设g(x)=x3+3x2-9x+c,则g'(x)=3x2+6x-9=3(

简单线代题///X1+X2+X3+X4+X5=13X1+2X2+X3+X4+3X5=0 X2+2X3+2X4+6X5=3

1111111111113211300122030122630000605433-1p00000p-2所以p=2时有解p不等于2时无解

求齐次线性方程组x1+x2+2x3-x4=0 ,-x1-3x3+2x4=0 ,2x1+x2+5x3-3x4=0的一般解

基础解系:η1=﹛x1=-1,x2=0,x3=1,x4=1﹜η2=﹛x1=-3,x2=1,x3=1,x4=0﹜通解为:k1η1+k2η2

齐次线性方程组{X1+X2+3X3+X4=0;2X1-X2+X3-3X4=0;X1+X3-X4=0}的基础解系

系数矩阵是11312-11-3101-1进行初等行变换后是100-201000011则x1-2x4=0,即x1=2x4x2=0x3+x4=0,即x3=-x4基础解系为(2,0,-1,1)

求齐次线性方程组 x1+x2+2x3-x4=0 -x1-3x3+2x4=0 2x1+x2+5x3-3x4=0 的一般解.

解:A=112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(

求齐次线性方程组 X1+x2+2X3-X4=0 -X1 -3x3+2x4=0 2X1+X2+5X3-3X4=0的一般解,

看这里:http://zhidao.baidu.com/question/363570655.html

设齐次线性方程组:x1+x2+x3+x4=0,x2-x3+2x4=0,2x1+3x2+(a+2)x3+4x4=0,3x1

齐次线性方程组有非零解,则必有系数矩阵的行列式为0.(反之,若系数矩阵的行列式不为0,则它只有零解)|1111||01-12|=0|23a+24||351a+8|化简,得:|1111||01-12||

求下列函数的定义域1.y=x²+x2.y=2-x分之2+x3.y=√3-2x4.y=√2+3分之1过程请完整.

1、实数2、X不等于03、X<=1.54、题目有问题,是2+3分之1X吗,那答案就是X>=-6

X1 - X3 - X4 -5X5=0 X1+2X2+3X3+3X4+7X5=0 X1+X2+X3+X4+X5=0 X2

应该是无有无穷解的.第三个和第四个方程都分别和第一个第二个线性相关,所以相当于是只有第一个和第二个方程.五个未知数,两个方程,结论便是无穷个解.随意定下其中三个,就能得到一个解.

线性代数练习题求助求方程组:①X1-X2-X3+X4=0;②X1-X2+X3-3X4=0;③X1-X2-2X3+3X4=

系数矩阵=1-1-111-11-31-1-23r2-r1,r3-r11-1-11002-400-12r2*(1/2),r1+r2,r3+r21-10-1001-20000方程组的通解为:c1(1,1,

一个多项式加上2x2 −x3 −5−3x4 

设这个多项式是A,∵A+(2x2-x3-5-3x4)=3x4-5x3-3,∴A=3x4-5x3-3-(2x2-x3-5-3x4)=3x4-5x3-3-2x2+x3+5+3x4=6x4-4x3-2x2+

求曲线y=3x4-4x3+1的拐点及凹凸区间.

y′=12x3-12x2,y″=36x2-24x=12x(3x-2)令y″=0解得,x=0或x=23.所以曲线的拐点为(0,1),(23,1127).当x<0或x>23时,y″>0,则曲线的凹区间为(

求线性方程组{X1+X2+2X3-3X4=0; X1+2X2-X3+2X4=0; 2X1+3X2+X3-X4=0}的基础

112-3(第三行减112-3(第二行减000012-12第二行)112-3第一行)112-3行变换231-1---->231-1---->231-1---->00000000112-3行变换105-