y=3x4−−√3 4x3−−√ 的导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:12:23
(1)f′(x)=x3-3x2+2x=0⇒x=0,1,2x(0,1)1(1,2)2(2,6)f′(x)>00<00>0f(x)增极大值14+a减极小值a增所以,f(x)在(0,1)上
继续化简,把第二个方程代入第一个方程,x1与x2都用x3,x4表示,所以x3,x4可以作为自由未知量.还有其他情形
k,f为何值是方程组无解,解唯一,有无穷多解?在有解是,求出全部解.k≠-2时,方程组有唯一解.当k=-2时,r4+3r3100400
x=[ones(13,1),x1,x2,x3,x4];[b,bint,r,rint,stats]=regress(y,x);b,bint,stats
5式相加,3(x1+x2+x3+x4+x5)=1+5-5-3+2=0所以x1+x2+x3+x4+x5=0X1+X2+X3=5,X4+X5+X1=-3,两式相加:X1+(X1+X2+X3+X4+X5)=
(I)因为函数f(x)=14x4+x3−92x2+cx有三个极值点,所以f'(x)=x3+3x2-9x+c=0有三个互异的实根.设g(x)=x3+3x2-9x+c,则g'(x)=3x2+6x-9=3(
1111111111113211300122030122630000605433-1p00000p-2所以p=2时有解p不等于2时无解
基础解系:η1=﹛x1=-1,x2=0,x3=1,x4=1﹜η2=﹛x1=-3,x2=1,x3=1,x4=0﹜通解为:k1η1+k2η2
系数矩阵是11312-11-3101-1进行初等行变换后是100-201000011则x1-2x4=0,即x1=2x4x2=0x3+x4=0,即x3=-x4基础解系为(2,0,-1,1)
解:A=112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(
看这里:http://zhidao.baidu.com/question/363570655.html
齐次线性方程组有非零解,则必有系数矩阵的行列式为0.(反之,若系数矩阵的行列式不为0,则它只有零解)|1111||01-12|=0|23a+24||351a+8|化简,得:|1111||01-12||
1、实数2、X不等于03、X<=1.54、题目有问题,是2+3分之1X吗,那答案就是X>=-6
应该是无有无穷解的.第三个和第四个方程都分别和第一个第二个线性相关,所以相当于是只有第一个和第二个方程.五个未知数,两个方程,结论便是无穷个解.随意定下其中三个,就能得到一个解.
系数矩阵=1-1-111-11-31-1-23r2-r1,r3-r11-1-11002-400-12r2*(1/2),r1+r2,r3+r21-10-1001-20000方程组的通解为:c1(1,1,
设这个多项式是A,∵A+(2x2-x3-5-3x4)=3x4-5x3-3,∴A=3x4-5x3-3-(2x2-x3-5-3x4)=3x4-5x3-3-2x2+x3+5+3x4=6x4-4x3-2x2+
y′=12x3-12x2,y″=36x2-24x=12x(3x-2)令y″=0解得,x=0或x=23.所以曲线的拐点为(0,1),(23,1127).当x<0或x>23时,y″>0,则曲线的凹区间为(
112-3(第三行减112-3(第二行减000012-12第二行)112-3第一行)112-3行变换231-1---->231-1---->231-1---->00000000112-3行变换105-