y=3x 2的正态分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:49:48
D(X)=σ^2D(Y)=λpxy=Cov(X,Y)/根号(D(X)D(Y))Cov(x,y)=pxy(σ)根号λ=0.5(σ)根号λD(3x-2y)=D(3x)+D(-2y)+2Cov(3x,-2y
matlab只能通过仿真来模拟,而不是准确的概率密度函数.具体程序是下边这样的.x1=2+randn([100000,1]);x2=4+randn([100000,1]);Y=714+807*(x1)
问题1你计算一下Z的期望和方差就行因为正态分布两个参数的意义就是期望和方差,所以问一个随机变量是什么杨的正态分布其实就是问他的期望和方差是多少的问题问题2方差的性质如果XY相互独立则D(aX+bY)=
设Y的分布函数为F(y),X的密度函数为g(x)则F(y)=P(Y
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
E(X)=0,D(X)=E(X^2)=1,E(X^3)=0E(X^4)=3E(Y)=2*E(X^2)+E(X)+3=5E(XY)=2*E(X^3)+E(X^2)+3*E(X)=1E(Y^2)=4*E(
首先,什么叫二维正态分布.2个高斯随机变量放在一起,叫高斯向量.何为2维,指的是两个向量关于实数域线性无关.(等价于covariance非退化)现在已知(U,V)线性无关,问经过一个线性变换后是否相关
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²
方差为3+4=7DZ=DX+DY如果有系数系数要平方
设Z为标准正态分布,则X=bZ+a,Y=(bZ+a)^3=b^3Z^3+3b^2aZ^2+3ba^2Z+a^3.EY=0+3b^2a+0+a^3=3b^2a+a^3DY=1/根号(2*pi)*积分_负
服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是
先看一下定义,如下,P{X1=0,X2=0}()应该是正泰的概率密度的函数联合概率和独立两个事件A和B的联合概率定义在相同的样本空间中(结果落在A和B中的概率)P(AB)=P(C);其中:事件C=A∩
X1X2iidindependentandidenticaldistributionY=2+3X1-4X2E(Y)=2VAR(Y)=9+16=25N(2,25)所以fy(Y)=1/sqrt(2pi)*
X1和X2是独立的吧?D(2X1+3X2)=4D(X1)+9D(X2)=4x1+9x1=13再问:我也是一直在想是不是独立的。现在的观点也是两者相互独立。谢
1、x1、x2是否相互独立,与你得出的Δ=X1-X2无关.只与你使用环境有关,与你建模时假设有关,也就是实际情况.2、如果相互独立,标准正态分布的函数也是标正分布,期望与方差根据公式可求的.如果不独立
当X~N(μ,σ)时,E(X)=μ,D(X)=σ²所以E(Y)=aE(X)+b=aμ+b,D(Y)=a²E(X)=a²σ²