y=1 根号a2 x2 求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:13:00
∵y=x^(1/3)*(1-cosx)∴y'=(x^(1/3))'*(1-cosx)+x^(1/3)*(1-cosx)'=(1-cosx)/(3x^(2/3))+x^(1/3)*sinx.
y=x^(-1/2)-x^(3/2)∴y'=-1/2x^(3/2)-3/2x^(1/2)明教为您解答,请点击[采纳为满意回答];如若您有不满意之处,请指出,我一定改正!希望还您一个正确答复!祝您学业进
再答:���Ϻ����
y=√(1+ln^2*x)y'=[1/2√(1+ln^2x)]*(2lnx)*1/x则lnxy'=----------------------x√(1+ln^2x)
y=1/x*cosxy'=(-x^-2)cosx-1/xsinx
ln根号[(1-x)/(1+x)]y'=(1+x)/(1-x)*[(-1-x-1+x)/(1+x)^2]=-2/(1-x^2)
y'=[1/(根号1+x/1-x)]*(根号1+x/1-x)'=[1/(根号1+x/1-x)]*(1/2根号1+x/1-x)*[(1+x)/(1-x)]'=[1/(根号1+x/1-x)]*(1/2根号
分两步求导: 第一:对y求导得 y'=1/(1+e的根号下x-1次方再平方)
y=lg根号(1-x^2)y‘=1/根号(1-x²)*ln10*(1/2)1/根号(1-x²)*(-2x)y'=-xln10/(1-x²)再问:-x/(1-x²
u=x²+1则u'=2xv=√u则v'=1/(2√u)*u'y=1/v所以y'=-1/v²*v'=-1/(x²+1)*1/[2√(x²+1)]*u'=-1/(x
y=arcsinx.√[(1-x)/(1+x)]y'=(1/2)√[(1+x)/(1-x)].[-2/(1+x)^2].arcsinx+√[(1-x)/(1+x)].[1/√(1-x^2)]=-√[1
过程挺繁复的,只好逐步化简了.
y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x
这是关于隐函数求导的,两边同时取对数,变成ln(y)=ln(x)-ln(√x²+1),再同时求导两边,左边是1/y*y'右边是1/x-2x/(√x²-1这样就可以把左边的1/y移到
利用对数指数函数恒等变形即可.记住了:遇到幂指函数求导,95%以上都要用到对数指数函数恒等变形:f(x)^g(x)=e^[g(x)lnf(x)],再进行计算就是所学的公式(复合函数求导)套用了.y=e
y=tanx*√(1-x²)那么y'=(tanx)'*√(1-x²)+tanx*[√(1-x²)]'显然(tanx)'=1/cos²x[√(1-x²)
因为,(tanx)’=1/cos²x,Y^(-1){Y的反函数}=tanx所以y^(-1)=(-2)·√(1-3x)/3·coos²√(1-3x)因为y’=1/[y^(-1)]ˊ所