y-x 2y=x3求解微分方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:18:54
令u=y^(1-3)=y^(-2)du=-2y^(-3)dydy/dx-y=x*y^3dy/(y^3)dx-y^(-2)=x-0.5du/dx-u=xdu/dx+2u=-2x(e^(2x)u)'=-2
x^2*dy/dx=xy-y^2dy/dx=y/x-y^2/x^2u=y/xy=xuy'=u+xu'代入:u+xu'=u+u^2xu'=u^2du/u^2=dx/x-1/u=lnx+lnCCx=e^(
y''=y'+xy''-y'=xy'=pdp/dx-p=xdp/dx=x+px+p=udp/dx=du/dx-1du/dx-1=udu/(u+1)=dxx=ln(u+1)+C0u+1=Ce^xp=Ce
1通解r^2+1=0C1*sinx+C2*cosx2特解1/(D^2+1)*sinx=Im(1/(D+i)/(D-i)*exp(ix))=Im(exp(ix)/2i/D*1=Im(x*exp(ix)/
(dy/dx)=e^(x+y)(dy/dx)=e^x*e^y分离变量dy/e^y=e^xdx两边积分-e^(-y)=e^x+C1则-y=ln(C-e^x)整理得y=-ln(C-e^x)
设u=x+ydy=du-dx原式可化为du/dx-1=(a/u)^21/(1+(a/u)^2)*du=dx两边积分得∫1/(1+(a/u)^2)du=x+c∫u^2/(u^2+a^2)du=x+c∫(
点击放大,如果看不清,可以将点击放大后的图片临时copy下来,会非常清晰:
再答:是(x+y)^2还是x+y^2再问:是前者再问:第一道题你算错了吧。再答:为啥。。。。再问:再问:这个是答案。再答:第二个你把分子分母倒一下。。。。我看看。。?再问:??再问:再问:第二道题再答
x3+y3-x2y-xy2=(x+y)(x2-xy+y2)-xy(x+y)=(x+y)(x2-2xy+y2)=(x+y)(x2+2xy+y2-4xy)=(x+y)[(x+y)2-4xy]=10×(10
直接积分就好了t=1/2*x^2+xy+c,c为常数
化简得:9-12Y^2+6Y+4+12Y^2+4Y-10-10Y+X-Y+1=X-Y+4带入X、Y值得:=3
A+B+C=(x3+3x2y-5xy2+6y3-1)+(y3+2xy2+x2y-2x3+2)+(x3-4x2y+3xy2-7y3+1)=(1+1-2)x3+(3+1-4)x2y+(-5+2+3)xy2
(xy2-x)dx+(x2y+y)dy=0y(x²+1)dy=-x(y²-1)dxy/(y²-1)dy=-x/(x²+1)dx两边积分得ln|y²-1
两边同除以x^2y'/(x^2)-(2/x^3)y=x通分(xy'-2y)/(x^3)=x[y/(x^2)]'=x积分y/(x^2)=(1/2)x^2+Cy=(1/2)x^4+Cx^2再问:请问,最终
令u=x-y+1则,u'=1-y'=1-u²这是一个可分离变量的微分方程,可以方便求解了再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以
两边同时对y积分得d(yy')=d(0.5y^2(lny-0.5))y'=0.5ylny-1/4y+c1/y积分得y=1/4y^2lny-1/4y^2+C1lny+C2
方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=
x²-x=7y²-y=7相减x²-x-y²+y=0(x+y)(x-y)=x-yx-y≠0约分x+y=1x²-x=7y²-y=7相加x&sup