y-3y-10y=x的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:11:45
y-3y-10y=x的通解
y"+y'=x的通解,

特征方程为a^2+a=0,解得a=0或a=-1,因此齐次方程的通解为y=C1+C2e^(-x).再求非齐次方程的一个特解.设特解为y=ax^2+bx+c,y‘=2ax+b,y''=2a,代入得2ax+

y"-y=e^x的通解

∵y"-y=0的特征方程是r²-1=0,则r=±1∴y"-y=0的通解是y=C1e^x+C2e^(-x)(C1,C2是积分常数)∵设原方程的一个解为y=Axe^x代入原方程得2Ae^x=e^

求微分方程y'=x/y+y/x的通解

y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算

求y''-y=x的通解

∵齐次方程y''-y'=0的特征方程是r2-r=0则特征根是r1=0,r2=1∴齐次方程的通解是y=(C1x+C2)e^x(C1,C2是积分常数)设原微分方程的一个特解是y=Ax2+Bx代入原微分方程

(2x-y^2)y’=2y的通解

求微分方程(2x-y²)y'=2y的通解由原式得:(2x-y²)dy=2ydx,即有2ydx+(y²-2x)dy=0.(1)P=2y,Q=y²-2x;ͦ

y''-y=e^|x|的通解

解微分方程的时候不要在意这种在常数上的一点点区别,这样来想,你是解得y=c1*e^x+c2*e^(-x)+1/2*x*e^x那么如果令c1=d1-1/2,c2=d2+1/2,就得到y=(d1-1/2)

y''-2y'+y=e^-x的通解

特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a

y''+2y'+y=x的通解

∵齐次方程y"+2y'+y=0的特征方程是r^2+2r+1=0,则r=-1(二重根)∴此齐次方程的通解是y=(C1x+C2)e^(-x)(C1,C2是常数)∵设原方程的解为y=Ax+B代入原方程,得A

(x+y)y'+(x-y)=0的通解

详见:http://hi.baidu.com/%B7%E3hjf/album/item/5fa110df8b26067395ee37a7.html

求y'=y/(y-x) 的通解

1.y=0且x≠0时,满足原方程2.y≠0时,由已知dy/dx=y/(y-x)得dx/dy=(y-x)/y=1-x/y令x/y=u,则原方程化为u+y(du/dy)=1-u即du/(1-2u)=dy/

y’+y=e^-x的通解

对应齐次方程是y'+y=0其通解是y=Ce^(-x),C是任意常数设方程的一个特解是y*=axe^(-x),代入方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)ae^(-x)=e

y′ =10^(x+y) 急求这道高数题微分方程的通解.

dy/dx=10^x*10^y10^(-y)dy=10^xdx积分得:-10^(-y)/ln10=10^x/ln10+C1化简得通y=-lg(C-10^x)

求微分方程y''-3y'+2y=x(e^x)的通解

通解为:Ce^x+De^(2x)-x(x/2+1)e^x其中C,D为任意实数由题意知特征方程为:λ²-3λ²+2=0,故λ=1或2故可设特解为:x(ax+b)e^x将其代入原方程解

y'-y=x的通解

y”=y'+xy”-y'=x齐次的特征方程r^2-r=0r=1,r=0齐次通解y=C1e^x+C2设特解为y=ax^2+bx+cy'=2ax+by''=2a代入得2a-(2ax+b)=x2a=-1,2

y''+y'+2y=x^2-3通解.

特征方程为r²+r+2=0,则r=(-1±√7i)/2∴a=-1/2,b=√7/2∴齐次方程的通解为Y=e^(-x/2)[C1cos(√7x/2)+C2sin(√7x/2)]再求非其次方程的

微分方程y'=x/y的通解

楼上的答案完全正确.

y'=(x-y+1)/(x+y-3)通解

(x+y^2+3)dy=(x-y+1)dx或:xdy+ydx+(y^2+3)dy-(x+1)dx=d(xy)+(y^2+3)dy-(x+1)dx=0通解为:xy+y^3/3+3y-x^2/2-x=C