y'-2y-3y=2e^x的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:39:56
y'-2y-3y=2e^x的通解
1.y=e^(4xsin2x) 求导 2.x^3(x+y)=y^2(2x-y)求导 3.e^(x/y)=2x-y求导

解1)答案e^(4xsin2x)*(4sin2x+8xcos2x)2)答案[(4lny)-(3lnx)-3-(y/x)]/[(3lnx)-(4x/y)+(2lny)+2]3)答案(3y^2-2xy)/

y=(e^x-e^-x)/2

令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²

高数题 求微分方程通解.y''-3y'+2y=e^x(1+e^2x)

特征方程r²-3r+2=0得r=1,2齐次方程通解y1=C1e^x+C2e^2x方程右边为e^x+e^3x设特解为y*=axe^x+be^3x则y*'=a(1+x)e^x+3be^3xy*"

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

y''-2y'+y=e^-x的通解

特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a

y'-2y=(e^x)-x

首先求齐次方程通y'-2y=0特征方程:x-2=0x=2为特征根∴y=Ce^(2x)设方程的一个特解为y=Ae^x+ax+b代入方程:Ae^x+a-2Ae^x-2ax-2b=-Ae^x-2ax+a-2

求大神做几道高数题,1、y‘=e的x-y次幂 2、y’+y=e的-x次幂 3、y“=sinx 4、y”=3y‘-3y

说明:下面的C、C(0)、C(1)、C(2)均为任意常数.1、稍作变形dy/dx=e^(x-y)则(e^y)dy=(e^x)dx两边同时不定积分,则e^y=e^x+C;2、y'+y=e^(-x)对应的

有关概率论方差的问题D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))} 为什么x y 独立时2E

首先,当xy独立时,E(XY)=E(X)*E(Y)这个好证明吧,利用xy相互独立时P(X=xi,Y=yi)=P(X=xi)*P(Y=yi),以及期望的定义计算就可以得到,就不详细说了然后,由上面的结论

求微分方程y''-3y'+2y=x(e^x)的通解

通解为:Ce^x+De^(2x)-x(x/2+1)e^x其中C,D为任意实数由题意知特征方程为:λ²-3λ²+2=0,故λ=1或2故可设特解为:x(ax+b)e^x将其代入原方程解

求微分方程y"+3y+2y=e的x次方的通解

题目应该是y"+3y'+2y=e^x吧?特征方程为r^2+3r+2=0,得r=-1,-2即齐次方程的通解y1=C1e^(-x)+C2e^(-2x)设特解y*=ae^x,代入方程得:ae^x+3ae^x

求微分方程y''-3y'+2y=e^x的解.

本题r=1,对应二阶齐次特征方程λ^2-3λ+2=0特征根:λ1=1,λ2=2对应齐次的通解为:Y*=c1e^x+c2e^(2x)(c1、c2为常数)r=1是特征方程的一个解.设所求特解为y=cxe^

求方程y”+3y’+2y=e^(-x)的通解

y”+3y’+2y=e^(-x)它的齐次方程是y''+3y'+2y=0这个常微分方程的特征方程是r²+3r+2=0特征根为r=-1,r=-2所以齐次方程的通解为y=(C1)e^(-x)+(C

求y''-2y'+5y=(e^x)sin2x

咋不是特征根了根据你解得的齐次的通解是y=e^x(C1sin2x+C2cos2x)右边含在齐次特解里再问:1.加减号打的时候打错了~2.由特征方程得出的解是含有复数,我知道可以是复数。3.这个我也知道

y'-2y=e^x的通解

答:原方程特征方程为r-2=0,解的特征根为r=2.原方程的齐次方程为dy/dx-2y=0,得:dy=2ydx,即dy/2y=dx.两边积分得:1/2*ln|y|=x+C1即ln|y|=2x+C2y=

求微分方程y''-y'+2y=e^X通解

特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,

求y=sin(e^2x)的微分y'

y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积

求微分方程y''-2y'-3y=e^2x的通解

y''-2y'-3y=e^(2x)齐次部分y''-2y'-3y=0对应的特征方程:x^2-2x-3=0=>x=-1或者x=3.基础解系e^(-x),e^(3x).y''-2y'-3y=e^(2x)有特

y"-2y'+2y=x*(e^x)*cosx

算起来好像很复杂,我算出的是:(x/4)(xsinx+cosx)e^x-(e^x*sinx)/8不知道对不对.