Y = e^1 x -1为无穷小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:18:58
e^sinx-e^x=e^x(e^(sinx-x)-1)和sinx-x等价而lim(x->0)(sinx-x)/x³=lim(x->0)(cosx-1)/3x²=lim(x->0)
因为e^x在x趋近于0时,等价无穷小是x+1e的-x次方=1/(e的x次方)所以当X趋近0时,1-(e的-x次方)的等价无穷小是1-1/(x+1)=x/(x+1)
就是求lim(x趋近0){[e^x+sinx-1]/x}可以用洛必达法则.对{[e^x+sinx-1]/x}的分子分母分别求导,得到{[e^x+cosx]}/1当x趋近0时,得1+1=2,所以无穷小e
x趋于0时,tan^3(x)趋于0,所以e^tan^3(x)-1与tan^3(x)为等价无穷小,tan(x)与x为等价无穷小,所以tan^3(x)与x^3为等价无穷小.所以n=3咯.再问:亲,谢谢再答
就是看e^x的展开式因为e^x=1+x+x^2/2+o(x^2)所以e^x-1-x=x^2/2+o(x^2)即e^x-1-x~x^2/2
洛必达法则或者展开e^x也可以
确实是3..再答:不用谢再问:再问:亲,帮忙求解下再答:第一个用重要极限,第二个一眼看出,a=1,带进去算出b,就这样了,其余的自己动手吧再问:嗯嗯,谢谢
当x为+∞或者无限接近于0的左边的,y为无穷大当x为无限接近于0的右边时或者x为无穷小时
证:∀ε>0,要使|(x-3)/x-3|=|(2x+3)/x|<ε,只须取δ=ε,于是对于∀ε>0,∃δ>0,当0<|(2x+3)/x|<δ时,总有 |(
证明:由于对于任何x都有|sinx|0,即,当x->0时,xsin(1/x)是无穷小.
楼上TEX都弄出来了!因为当x趋向于0时,sin(1/x)是一个有界量,而x是无穷小量,无穷小量与有界量的积仍是无穷小量,所以lim(x-->0)xsin(1/x)=0
因为x→无穷时,1/x→0,所以f(x)→无穷小再问:1/x趋近于0,f(x)不是趋近于1吗?再答:把f(x)求导得-e^(1/x)/x^2x→无穷时,分母趋于无穷大,而分子是趋于0所以是-0/&,所
y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2
都不是,是同阶无穷小,高阶无穷小的结果是0等价无穷小的结果是1.当x趋于0f(x)=e^(2x)-1=2x最后结果是2.所以是同阶无穷小.
这个应该很容易找吧,把正弦那部分想办法搞定了就好了.1.令an=1/(2πn)则f(an)=2πnsin(2πn)=0{f(an)}为趋于无穷小的无穷数列2.令bn=1/(2πn+π/2)则f(bn)
x趋于0时,sinx趋于0,1+secx趋于2,所以当然是无穷小,即limsinx/1+secx=0
是无穷大还是无穷小都是在x的某一个趋向下的若x趋于正无穷或负无穷1/x趋于0e的1/x趋于1但x趋于0得从左右极限考虑x+趋于01/x趋于正无穷e的函数趋于正无穷但是x-趋于01/x趋于负无穷e的函数
任给u>0,当x>1/u或x
a=1/2b=﹣1/2再问:答案对的,说下方法吧再答:e^x=1+x+x²/2+x³/3!+o﹙x³﹚﹙1+ax﹚/﹙1+bx﹚=1+﹙a-b﹚x-b﹙a-b﹚x