x趋近于0的等价代换
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:26:36
加减不能等价替换说的是部分,如果把加减整体一块替换,有时候还是可以的,这个关键要看是不是等价无穷小,也就是说替换的因子和被替换的因子是不是等价无穷小比如说这道题,sinx+cosx能不能用1+x替换,
x趋近于0求x+sinx的等价无穷小量x+sinx~x+x=2x即x+sinx~2x再问:对不起,是减号,刚刚打错了再答:lim(x->0)(x-sinx)/x^3=lim(x->0)(1-cosx)
可以证明 lim(x→0)[ln(1+x)]/x=1,从而x→0时,ln(1+x)~x所以 x→0,ln(1+2x)~2xx趋近于无穷,2ln[(x+3)/(x-3)]=2ln[1+6/(x-3)]~
不用这两种方法真心做不出来用等价无穷小最简单lim(x→0)[(1+x)^x-1]/x²=lim(x→0){e^[xln(1+x)]-1}/x²=lim(x→0)xln(1+x)/
点击图片就可以看清楚了如果等价无穷小的话就可以替换题中是sinx×lntanx,不是sinx×tanx况且sinx×tanx不是等价无穷小要sinx/tanx才是等价无穷小就是这样,哈!回答补充:你说
x趋近0时,limln(1+x)/x=1,所以就等价啊.
e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x,所以e^tan-e^x等价于tanx-x.所以,x→0时,tanx-x等价于x
lim{x->0}ln(1+x)/x=lim{x->0}1/x×ln(1+x)=lim{x->0}ln(1+x)^{1/x}=ln[lim{x->0}(1+x)^{1/x}]=lne=1令e^x-1=
可以这样计算当x趋向于0时,sin²3x~9x^2;sinx~x;1-cosx~1/2x^2所以,lim[(tanx-sinx)/sin²3x]=lim[(sinx/cosx-si
a^x=e^(xlna)e^x-1~xe^(xlna)-1~xlna
x->0时,ln[x+√(1+x^2)]=ln{1+[√(1+x^2)+x-1]}~√(1+x^2)+x-1=√(1+x^2)-1+x~x^2/2+x~x原式=lim{x->0}x/x=1
当x趋近于0lim[(1+x)^a-1]=lim{[(1+x)^(1/x)]^(ax)-1}=lim[e^(ax)-1]∵x趋近于0,有e^x-1x∴ax趋近于0,有e^(ax)-1~ax所以有(1+
lim[ln(1+u)/u]=u→0lim[ln(1+u)^(1/u)]=u→0=lne=1
e^x-1~x,——》e^x~x+1,——》e^2x~2x+1,——》limx→0(x+e^2x)^(-1/x)=limx→0(x+2x+1)^(-1/x)=limx→0[(1+3x)^(1/3x)]
x-1是趋向0的所以将x-1进行无穷小替换再答:再答:如图所示,懂了吗?若芢有不明白请追问哦再答:不知我表达清楚了没有,有疑问要追问的哦~望采纳最快且最佳回答~^_^
第一个应该是(1+x)^2-1吧?当X趋近于0时,(1+x)^a-1~ax,第一个为2x,第二个为x/2.
x右趋近于0时,ln(ln(1+x))求极限可以用等价无穷小代换:ln(1+x)~x,ln(ln(1+x))~lnx;由于x右趋近于0时,lim(ln(ln(1+x))/lnx)=1(L"Hospit