x趋于正无穷时,sin(x) x的极限为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:25:59
答案好像是0分子有界,分母趋向无穷整体趋向0
证明:x趋于正无穷时,f(x)存在,故存在b,b>a.当x》b时,|f(x)|《M1又y=f(x)在[a,正无穷]上连续,当然在[a,b]上连续,故当x在区间[a,b]时,|f(x)|《M2所以:|f
∵lim(x->+∞)[√(1+x)-√x]=lim(x->+∞)[(1+x-x)/(√(1+x)+√x)](有理化分子)=lim(x->+∞)[1/(√(1+x)+√x)]=0∴lim(x->+∞)
极限为0,不用夹逼准则,先和差化积,再用无穷小与有界变量乘积为0
取两个收敛到不同极限的子列就行了
lim(x/(x+1))^x=lim1/【(x+1)/x)】^x=lim1/(1+1/x))^x=1/e
不放心的话,给分子添个负号好了,然后极限式外面再添个负号.
1\图象法2、求导.有没有具体的式子?/主要还是数形结合
lim[sin(1/x)+cos(1/x)]^x(x趋于正无穷)令t=1/x,当x->正无穷,有:t->0则:lim(x->正无穷)[sin(1/x)+cos(1/x)]^x=lim(sint+cos
用洛必达不是不可以,是没必要,把x^3除到分母里,分母就是2^x/x^3,显然2^x比x^3高阶,所以分母的极限为0,而分子是个有界量,所以就看出极限是0了~
1再问:求详细过程谢谢!再答:原式=根号(x^2+2x)/x-根号(x-1)/x=根号(x^2+2x)/根号(x^2)-根号(x-1)/根号(x^2)[因为x---.>正无穷,所以x>0,进而x=根号
极限不存在.上下同时除以x^2,令t=y/x,则原式=t/(1+t^2).由于t可以是任意非负数,所以极限不存在.
先除开,前者极限是1/2,后者是(1/2x)乘以cosx,(1/2x)是x趋于正无穷时的无穷小,而cosx有界,根据无穷小的性质,(1/2x)乘以cosx的极限为0,故原式极限为1/2.
因为X趋向正无穷是,括号内的无限接近于一.所以ln(x/x加1)等于0再问:Ϊʲô�����ڽӽ���1��再答:����˼��ѽ��100000/100001�����һ��再问:�
原式=sin(1/x)/(1/x)显然1/x趋于0所以极限=1
∵lim(x->+∞){[√(x+1)-√(x-1)]/2}=lim(x->+∞){[(x+1)-(x-1)]/[2(√(x+1)+√(x-1))]}(分子有理化)=lim(x->+∞){1/[√(x
把它当成分数,分母是1分子分母同时乘以sqr(x^2+1)+x得到:x/[sqr(x^2+1)+x]x→+∞时,原式=x/(x+x)=1/2
2阶x趋于0时sinx趋于x,sinx趋于x^2