x趋于0正,xln(cotx)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:50:02
(1)趋于0时是0,sin(1/x)是有界函数,X是0,无穷小,0与有界函数的乘积是无穷小,故极限为0.(2)趋于无穷大时是1,利用第一个重要极限可以推知.再问:谢谢你哈第一个重要极限是什么捏能详细的
1、lim(1/x)/(-1/(sinx)^2)=lim(-2cosxsinx)=02、lime^(sinxlnx)lime^(sinxlnx)=lim(1/x)/(-cosx/sinx)=lim(-
先把分子有理化,则原式变为lim(tanx-sinx)/2[xln(1+x)-x²]=lim[sinx(1-cosx)]/2x[ln(1+x)-x]sinx和x等价无穷小,约掉原式=lim(
是的,我搞错了……再问:嗯嗯。谢谢再答:一开始脑抽筋……
不放心的话,给分子添个负号好了,然后极限式外面再添个负号.
f(x)是g(x)的高阶无穷小.ln(1-x²)~-x²,所以f(x)~-3x³,g(x)=sin²x~x²再问:那么麻烦再问一下,这种ln(1-x&
设f(x)=sinx/根号x,需证对任意的ε>0,存在X>0,当x>X时,恒有|f(x)-0|0,当x>X时,恒有|f(x)-0|
这样的函数应该是有的,我记得曾经在一个论坛里见过有人构造过这样一个函数f(x)=sin(2nπx)/n式中n=1,2,3,……,x∈(n-1,n],可以证明下这个函数应该是连续的,而且倒数也是连续的.
利用诺必达法则Lim(sinx/(Ln(x+1)+x/(x+1)))再用一次Lim(cosx/[(1/x+1)+(x+1-x)/(x+1)^2)]=2
根据罗比达法则求导,极限为无穷
lim(x→0)cotx[2x/(1-x)]=lim(x→0)2x/[tanx(1-x)]x→0tanx与x价=lim(x→0)2x/[x(1-x)]=lim(x→0)2/(1-x)=2
lim(x->0)(x-sinx)/[xln(1-ax²)]=lim(x->0)(x-sinx)/[x·(-ax²)]=-1/alim(x->0)(x-sinx)/[x³
从哪里可以看出是无穷小与有界量的乘积呢明明是0*无穷大的形式嘛
limx趋于0〔(1+x)/(1-x)〕^cotx=limx趋于0〔1+2x/(1-x)〕^【((1-x)/2x)*(2x/(1-x))*cotx】=e^[2x*cotx/(1-x)]=e^0=1li
先除开,前者极限是1/2,后者是(1/2x)乘以cosx,(1/2x)是x趋于正无穷时的无穷小,而cosx有界,根据无穷小的性质,(1/2x)乘以cosx的极限为0,故原式极限为1/2.
因为X趋向正无穷是,括号内的无限接近于一.所以ln(x/x加1)等于0再问:Ϊʲô�����ڽӽ���1��再答:����˼��ѽ��100000/100001�����һ��再问:�
让x趋于0,倒代换,同分,分子分母是零比零型,然后用洛必达求导,同分最后结果是-0.5鉴于计算机水平问题跟你说步骤.按着我说的肯定能得出答案.
上下乘√(x²+1)+x分子平方差=x²+1-x²=1所以原式=limx/[√(x²+1)+x]上下除以x=lim1/[√(1+1/x²)+1]=1/
1.[㏑(x-π/2)]/tanx当x趋于π/2时的极限=lim(x->π/2)1/(x-π/2)/sec²x=lim(x->π/2)cos²x/(x-π/2)=lim(x->π/
底数和指数分开求:底数:limtanx-x/x-sinx(0/0形式,求导)=lim1/cos^2(x)-1/1-cosx(0/0形式,再求导)=lim2sinx/cos^3(x)/sinx=2/si