X趋于0时,(1-x)的1 sinx次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:51:15
X趋于0时,(1-x)的1 sinx次方
简单高数题:求ln[(e^x-1)/x]当x趋于0时的极限?

=lnlim(e^x-1)/x罗必塔法则=lnlime^x=ln1=0

lim(1/x)*limx的极限题,x趋于0

由于在x无限趋近于0时,(1/x)的极限不存在(即为无穷大),不可应用极限相乘时的运算法则,因此此题实应无解.incaseofemercy之意见恐不准确.更新/补充:对不存在(无穷大)的极限,不可应用

求x趋于0时,lnx+1/x的极限

limlne^(lnx+1/x)=limln(xe^(1/x))=ln[lime^(1/x)/(1/x)]=ln[lim-1/x²e^(1/x)/(-1/x²)]=ln[lime^

x趋于0时,ln(1+x)/x^2的极限怎么求?

用洛必达法则是[1/(1+x)]/2x=1/(2x+2x²)但是这两个结果一样因为都是分母趋于0极限不存在

当x趋于0时,ln(1+x)~x 为什么?

相似.可以等价替换在合适的情况下

((cosx)^(1/x)-1)/x 当x趋于0时的极限是多少?

首先化成指数形式接着利用等价无穷小ln(1+x)~x以及1-cosx~x^2/2可以解得最后答案为-1/2-----解题步骤如下-----

求x趋于0时lim(e^x-1)/x

x趋于0时lim(e^x-1)/x=lim(x->0)(e^x-0)/1=lim(x->0)(e^x)=e^0=1不是你那个公式,是分子分母分别求导.再问:(e^x-1)/x不属于(u/v)'的情况吗

x趋于0时lim[1/x+ln(1+e^x)]的极限问题

你的说法是正确的,只有两个函数的极限都存在的时候才能加减乘.这是极限的一个性质.别人的解释是这样的,一个极限存在,而另一个极限不存在.那么他们的和也不存在.这是极限的另外延伸的一个性质定理.既然不存在

二维随机函数当X趋于无穷小,Y趋于无穷大时,函数趋于1还是0

因为归一性,在x,y取值范围内的积分(或者级数)必为1,因此无穷大的时候分布函数必须趋于0,不然积分(或者级数)不会收敛

x趋于0时,求ln(1+x^2)/e^x-1-sinx的极限

对于所有求极限值的方法都是统一:非0/0型,直接代入求值即可.0/0型,分子分母求导,代入值如果任然0/0,重复.无穷/无穷.这个可以转成0/0再做对于这个题目,需要求导2次,代入0值计算结果==2一

(x-1)arcsinx在x趋于1时的极限

答案应该是0.求(x-1)arcsinx在x趋于1时的极限,它的两部分(x-1)和arcsinx的极限值都是可求的,(x-1)当x趋近于1时,极值为0,即为无穷小.而arcsinx在x趋近于1时,极值

x趋于无穷大时1/cos(1/x)的极限

x趋于无穷大,则1/x趋于 0  cos(1/x)趋于1 所以1/cos(1/x)趋于1

(arcsinx-x)/[x^2*ln(1+2x)] 在x趋于0时的极限

用等价无穷小替换和洛必达法则,原式=lim(x→0)(arcsinx-x)/(2x^3)=lim(x→0)(1/√(1-x^2)-1)/(6x^2)=lim(x→0)(1-√(1-x^2))/(6x^

当x趋于0时,负的1/X乘以sin1/x^2的极限是?

负无穷大,不用考虑后面那个正弦函数,因为是永远小于等于1,而负的1/X趋向于负无穷大.

lim x趋于0 lnx/(e的1/x次方)

利用洛笔答法则得=lim(1/x)/(-e^(1/x)/x²)=-limx/e^(1/x)令t=1/x,则=-lim1/(t·e^t)=0

x趋于0时 ln(1+x)/sinx的极限?

x趋于0ln(1+x)和x是等价无穷小sinx和x也是等价无穷小所以=x/x=1

X趋于0时(1-COSX)/X的极限

limx->0,(1-cosx)/x罗比达法则.=limx->0,sinx/1=limx->0,sinx=0用一次罗比达法则就好了.

limx 趋于无穷大时(1+3/x)^x的极值

令1/a=3/x则a趋于无穷且x=3a所以原式=lim(a趋于无穷)(1+1/a)^3a=lim(a趋于无穷)[(1+1/a)^a]³=e³