x趋于0x不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:46:37
相似.可以等价替换在合适的情况下
用洛必达法则,极限为无穷大.
证明:因为lim(x→0)ln(x+1)=ln(0+1)=0,lim(x→0)x=0,且lim(x→0)[ln(x+1)]/x=lim(x→0)ln[(x+1)^(1/x)]=lne=1,所以ln(x
应该是e^x-1~x(x趋于0),0/0型未定式用洛毕达法则lim(e^x-1)/x=lim(e^x-1)‘/x’=lime^x/1=e^0=1
利用罗比达法则lim(x→0)(sinx+x*cosx)/x=lim(x→0)(2cosx-xsinx)=2
x趋于0时lim(e^x-1)/x=lim(x->0)(e^x-0)/1=lim(x->0)(e^x)=e^0=1不是你那个公式,是分子分母分别求导.再问:(e^x-1)/x不属于(u/v)'的情况吗
用两次洛必达法则可以了
/>无穷小与有界函数的乘积,x在x趋于0是是无穷小,而后面那个是有界函数,希望可以帮到你,所以是0
因为归一性,在x,y取值范围内的积分(或者级数)必为1,因此无穷大的时候分布函数必须趋于0,不然积分(或者级数)不会收敛
x趋于0时,e^x趋于1,x^2趋于0,所以(e^x)/x^2趋于正无穷.
应用洛必达法则:lim(x-tanx)/x^2=lim(x-tanx)/limx^2=lim(x-tanx)'/lim(x^2)'=lim(1-(secx)^2)/lim(2x)(再次应用洛必达法则)
△x→0时(△y-dy)/△x=△y/△x-dy/△x→f'(x0)-f'(x0)=0.
利用taylor展开,当x→0时,arcsinx=x+(x^3)/6+o(x^3)原式=lim[1+(x^2)/6+o(x^2)]^(1/x^2)=e^(1/6)重要极限
因为分式的分子和分母都趋向于0,故可以用洛必达法则,对分子、分母分别求导.则上式=lim(x→0)[2/(1+2x)]/1=lim(x→0)2/(1+2x)=2/(1+0)=2希望这个回答对你有帮助
分子分母同乘sin(x/2^n)分子一步步可等于(sinx)/2^n分母=sin(x/2^n)因为limx/sinx=1x趋于0时所以lim(x/2^n)/sin(x/2^n)=1而分子=sinx/x
lim(sin2x/x)(x趋于0)=lim2(sin2x/2x)(2x趋于0)=2lim(arctan2x/x)(x趋于∞)=0(因为arctan2x趋于π/2,而分母是无穷大,所以比值是0)
底数和指数分开求:底数:limtanx-x/x-sinx(0/0形式,求导)=lim1/cos^2(x)-1/1-cosx(0/0形式,再求导)=lim2sinx/cos^3(x)/sinx=2/si
因为2X在x属于负无穷到正无穷都是严格递增函数,且2x为连续函数,所以当x趋于1时,2x=2*1=2不等于3
分母求导如下:(√(1+x)-√(1-x))'=[(1+x)∧(-1/2)-(1-x)∧(-1/2)]'=[(1+x)∧(-1/2)]'-[(1+x)∧(-1/2)]'=-1/2(1+x)∧(1/2)