X的概率密度是f(x)={λe^-λx,x>0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:50:53
P(Y≤y)=P(lnX≤y)=P(X≤e^y)=∫(0→e^y)e^(-x)dx=-e^(-x)|(0→e^y)=1-e^(-e^y)f(y)=e^y·[e^(-e^y)]所以概率密度为:0,y≤0
这个随机变量服从N(0,1/2),所以DX=1/2再问:能详细点吗?谢谢!再答:看看正态分布的定义。
这题详细过程实在太麻烦,只能给你说个思路:先把期望和方差都算出来,结果两个都是3,然后再用切比雪夫不等式套,最后结果0.75
(1).EY=2E(X)=2(2)E(Y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3如有意见,欢迎讨论,共同学习;如有帮助,
D为图中阴影部分面积.
1)∫(0~)(x^k)e^(-x)dx=(k-1)!(对於整数k)E(2X)=∫(0~)2xe^(-x)dx=2*1!=22)E(e^(-2X))=∫(0~)e^(-2x)e^(-x)dx=∫(0~
概率密度在区间(-无穷,+无穷)上的积分值应该为1.若在[0,π]为sinx,其它为0的话,则概率密度的积分值为2,显然不满足概率密度的要求.
对概率密度函数积分就可以得到分布函数,当x=0时,f(x)=1/2*e^(-x)故分布函数F(x)=F(0)+∫(上限x,下限0)1/2*e^(-x)dx=F(0)-1/2*e^(-x)[代入上限x,
根据E(x)的定义,可以知道E(x)=∫(-∞,+∞)xf(x)dx=∫(0,∞)xλe^-λx(这里用分部积分法)=-xe^-λx|(0,∞)+∫(0,∞)e^-xλdx=1/λ再问:前面那个题目顺
E(x)=∫(-∞,+∞)xf(x)dx=0D(x)=E(x^2)-(E(x))^2=E(x^2)=∫(-∞,+∞)x^2f(x)dx=2∫(0,+∞)x^2f(x)dx=∫(0,+∞)x^2e^(-
f(x)=0.5e^xx≤00.5e^(-x)x>0可见f(x)是偶函数①E(2X)=2EX=2∫Rxf(x)dx=2∫【-∞,0】0.5*x*e^xdx+2∫【0,+∞】0.5*x*e^(-x)dx
回答:因为F(x)=∫{0,x}f(t)dt=1-e^(-λx).注意:因为x>0,故积分区域为(0,x].
F(y)=P(Y,=y)=P(e^x
对密度积分得到分布函数F(+OO)∫f(x)dx(上限为无穷下限为0)=-2/a*e^(-ax)=2/a=1,所以a=2然后特征函数就是E(e^itx)=∫e^itx*f(x)dx=∫2e^(it-2