x概率分布极大似然函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:02:05
x概率分布极大似然函数
已知随机变量X服从0-1分布,X取0的概率是取1的概率的3倍,求X的概率分布及分布函数!

因为服从0-1分布,所以变量只有0和1,分别设0和1的概率是P(0)P(1)所以:P(0)+P(1)=1P(0)=3P(1)解得:P(0)=0.75P(1)=0.25所以概率分布是:010.750.2

设总体为指数分布,已知概率密度函数求参数的矩估计和极大似然估计的解题步骤

设X~EXP(入)E(X)=1/入^入=1/(xbar)L(入|x)=π(连乘符号)(i=1~n)入e^(-入xi)两边取对数,并使ln(L)=ll(入|x)=ln(入^n)+(-入)Σ(xi)求导l

设总体X的概率密度为,求极大似然估计量

套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂  谢谢了再答:

1设随机变量X具有概率密度(分布密度函数),-∞+∞,求Y=X^2的概率密度(分布密度函数)

【解】分别记X,Y的分布函数为F(x)和F(y),随机变量X的概率密度为f(x).先求Y的分布函数F(y).由于Y=X^2>=0,故当y0时有F(y)=P{Y

已知概率密度函数怎么求概率分布函数?

若概率密度函数为f(x),且F'(x)=f(x),则概率分布函数为F(x)+C,C为常数,可以根据x趋于无穷时概率分布函数等于1求得

大学数学概率.X的分布函数F(x)=A+Barctanx,求A,B.

用分布函数定义来做0≤F(x)≤1所以0≤A+Barctanx≤1.F(X)不减,即F'(x)≥0∴F'(x)=B/1+x²≥0然后limF(-∞)=0,limF(+∞)=1通过这3个条件中

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

概率分布函数与概率密度函数区别与联系

一元函数下.概率分布函数是概率密度函数的变上限积分,就是原函数.概率密度函数是概率分布函数的一阶导函数.多元函数下.联合分布函数是联合密度函数的重积分.联合密度函数是联合分布函数关于每个变量的偏导.

概率密度分布函数 

f(x,y)=4,0<y<2x+1,-1/2<x<0f(x,y)=0,其他再答:F(X,Y)=0x>0,y<0F(X,Y)=1x<0,y>0F(X,Y)=4xy,0<y<2x+1,-1/2<x<0

概率 分布函数设随机变量x的分布函数F(x)= 0 ,x

因为实际上在连续型随机变量的中单个点的概率是没有意义的,这一点无论是从连续型随机变量概率的定义还是从计算方法来看都是可以说明问题的(从负无穷到正无穷的概率一共为1,那么单个点的概率就是用1除以一个无穷

设X服从0-1分布,X1,X2.XN是来自X的一个样本,试求参数P的极大似然估计值

P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x

概率密度函数为分段函数时参数的的极大似然估计量怎么求?

这个问题其实很简单按照公式积分就好了

设X服从参数为λ的泊松分布,试求参数λ的矩估计与极大似然估计

所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计