X服从在[a,b]上的均匀分布,那么X分布密度函数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:46:01
X服从在[a,b]上的均匀分布,那么X分布密度函数为
设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c不等于零),试求随机变量Y的密度函数

不对的地方多多指教再问:第一步不太明白诶!再答:f(x)么?这是均匀分布的公式啊

设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y)

XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-

测量球的直径,设其值服从[a,b]上的均匀分布,求球的体积的分布密度

所述,在[a,b]上的均匀分布使密度的x的函数是函数f(x)=1/(BA)×属于[b〕,其他时间间隔函数f(x)=0的那么,根据定义的要求E(X)E(X)=SX*F(X)DX的上限和下限是正无穷大和负

设随机变量x服从区间[a b]上的均匀分布 写出其概率密度函数f(x),并求其数学期望Ex,方差Dx.

F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/

对圆的直径作近似测量,设测量值x在区间[a,b]上服从均匀分布,求圆面积S的数学期望

测量值x在区间[a,b]上服从均匀分布圆面积S的数学期望ES=π[Ex/2]^2=π[(a+b)/4]^2=π(a+b)^2/16再问:r的期望Er=(a+b)/4是不?再答:恩,就是这样

设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx!

X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤

设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx

密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b

概率论(设随机变量X在(0,a)上随机地取值,服从均匀分布)详细见补充

f(y|x)=1/(a-x)f(x)=1/asof(x,y)=f(y|x)f(x)=1/a(a-x)f(y)=[f(x,y)对x的积分,积分限是0到y]=lna/a-ln(a-y)/a

设随机变量X在(0,1)上服从均匀分布,(1)求Y等于绝对值X的概率密度.

Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0

设球的直径服从[a,b]上的均匀分布,求其体积的数学期望.

设直径R,由题意得:F(R)=(R-a)/(b-a)f(R)=1/(b-a)体积的数学期望E=∫4πR³/3(b-a)dR=πR^4/3(b-a)下限b,上限a可得E=π(b²+a

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

在MATLAB中如何取一个服从(a,b)上的均匀分布的数

%m为取数个数,A=rand(1,m);%产生0,1,m个均匀分布的随机数B=a+(b-a).*A;%B就是所要找的

设某种货物的需求量X与供应量Y都在区间[0,a]上服从均匀分布,并且两者相互独立,则缺货的概率为多少?

缺货概率为P{X>Y}=∫∫{X>Y}fXY(x,y)dxdy因为X,Y独立所以fXY(x,y)=fX(x)fY(y)=(1/a)(1/a)=1/a^2因为只需考虑x>y所以P{X>Y}=∫∫(1/a