X与Y相互独立,且X服从a=3的指数分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:46:30
这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x
E(x)=(-1+3)/2=1,E(y)=(2+4)/2=3.而x与y相互独立,于是E(xy)=E(x)E(y)=3.
X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕
fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ
1/(PI)^O.5
均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1
相互独立的随机变量,有E(XY)=E(X)E(Y)E(X)=1E(Y)=3所求=3
用方差性质如图计算,答案是43.经济数学团队帮你解答,请及时采纳.谢谢!
均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
P(AB)=7/9?再问:P(A∪B)再答:均匀分布f(x)=1/2相互独立P(A∪B)=P(A)+P(B)-P(A)P(B)=(a-1)/2+(3-a)/2-[(a-1)/2][(3-a)/2]=7
显然1<a<3,P(A)+P(B)=1P(A)×P(B)=1/4P(A)×[1-P(A)]=1/4解得:P(A)=1/2a=2
因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果
随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
D(2X-3Y)=4*D(X)+9*D(Y)D(X)=n*p*q=100*0.2*0.8=16D(Y)=λ=3所求为64+27=91