x∧2arctanx的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:04:10
∫(-1,1)arctanx/(1+x^2)dx=∫(-1,1)arctanxd(arctanx)=(arctanx)^2/2|(-1,1)=0
被积函数是偶函数,原函数(当C=0时)是奇函数∫(-1→1)x²arctan²x/(1+x²)dx=∫(-1→1)(1+x²-1)arctan²x/(
见图再问:想问一下,arctanx是什么函数,奇函数还是偶函数,还有arcsinx跟arccosx,再答:arctan是tanx的反函数再问:还有arcsinx跟arccosx奇函数还是偶函数再答:a
等价无穷小替换只能用于乘法运算,不能用于代数和其中的某一项.x-arctanx(1+x^2)不能直接替换为x-x(1+x^2).再问:你的意思是arctanx后的(1+x^2)为代数和运算故不能用等价
∫x²arctanxdx+∫cos⁵xdx=∫arctanxd(x³/3)+∫cos⁴xd(sinx)=(1/3)x³arctanx-(1/3)∫
用分部积分,设u=arctanx,v'=1/x^2u'=1/(1+x^2),v=-1/x,原式=-(arctanx)/x+∫dx/[x(1+x^2)]=-(arctanx)/x+∫(-x)dx/(1+
可以令arctanx=t,则x=tant,dx=sec²tdt把这些代入定积分,就可以化简来计算了∫(+∞0)arctanx/((1+x∧2)∧1.5)dx=∫(+∞0)arctanx/((
∫(arctanx)/(x^2(x^2+1))dxletx=tanadx=(seca)^2da∫(arctanx)/(x^2(x^2+1))dx=∫[a/(tana)^2]da=-∫ad(cota+a
f(arctanx)d(arctanx)=F(arctanx)+cf(arctanx)[1/(1+x^2)]dx=F(arctanx)+c
∫arctanx/(1+x²)dx=∫arctanxd(arctanx)=0.5(arctanx)²代入上下限∞和1显然tanπ/2=+∞即arctan∞=π/2,arctan1=
分部积分再问:第一步是怎么来的啊再答:分部积分再答:
∫[arctan(x)]*x^2/(1+x^2)dx=∫1*arctanxdx-∫(arctanx)/(x^2+1)dx={x*arctan(x)-∫x/(x^2+1)dx}-∫[arctan(x)]
点击放大:(图解已经传上,稍等即可)
分部积分法再答:
将arctanx+c求导,得xf(x)的表达式,后面的你应该会吧
原式=∫xdx/(1+x^2)-∫arctanxdx/(1+x^2)=1/2*∫d(1+x^2)/(1+x^2)-∫arctanxdarctanx=1/2*ln(1+x^2)-1/2*(arctanx
∫arctanxdx=xarctanx-∫xdarctanx=xarctanx-∫x/(1+x²)dx=xarctanx-(1/2)*∫d(1+x²)/(1+x²)=xa
分部积分,结果=X^ 3 ·arctanX/3-X^2/6+In|1+X^2|/6+C,发张图给你看下我的解题过程