x^2-y^2=Z怎么用隐函数求导法求二阶导数?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:16:29
df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0
代码如下:xx=-1:0.1:1;[xy]=meshgrid(xx);z=2-x.^2-y.^2;surf(x,y,z)
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
题目应是:x^2+y^2+z^2=y*e^z吧记F=x^2+y^2+z^2-y*e^z,则F'=2x,F'=2y-e^z,F'=2z-y*e^z,则z'=-F'/F'=2x/(y*e^z-2z),z'
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
xx=-5:0.1:5;yy=xx;[x,y]=meshgrid(xx,yy);z=x.^2+y.^2+sin(x.*y);subplot(1,2,1)mesh(x,y,z)subplot(1,2,2
x^2+y^2+z^2+4z=02xdx+2ydy+2zdz+4dz=0(2z+4)dz-2xdx-2ydydz=(-2xdx-2ydy)/(2z+4)
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
[X,Y]=meshgrid([-10:0.1:10]);Z=sin(pi*sqrt(X.^2+Y.^2));surf(X,Y,Z)
两边同时对x求一阶偏导得3x^2+6z*z'-4z'=0(可以解出z’,用z和x表示)再求二阶偏导得6x+6z‘*z’+6z*z''-4z''=0解出z''
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
your answer here