xy等于e的x y次方的1阶导数是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:01:59
e的x次方对x求导还是e的x次方乘以dy/dxxy是复合函数需要分别求导先x求导是y然后y求导是x乘以dy/dx这是用复合函数求导公式得来的-e对x求导是0至于为什么有的有dy/dx而y那项没有dy/
直接求导(xy^2)=y^2+2xy*y'(e^xy)'=(xy)'*xy*e^xy=(y+x*y')*xy*e^xy然后带进去求y'就是dy/dx
对x求导为y*e^(xy)对y求导为x*e^(xy)对x,y求偏导为e^(xy)+xy*e^(xy)
e^y-xy=ee^y·dy/dx-(y+x·dy/dx)=0e^y·dy/dx-y-x·dy/dx=0(e^y-x)·dy/dx=ydy/dx=y/(e^y-x)dy/dx不能叫做dx分之dy,因为
原方程是xy=1-e^y?如果是的话将等式两边对X求导数得y+xy'=e^y*y'则y‘=y/(e^y-x)y'(0)=y/e^y
1.两边对x求导:2yy'-2y-2xy'=0y'=y/(y-x)2.两边对x求导:e^(xy)*(y+xy')+3y^2y'-5=0y'=[5-e^(xy)]/[xe^(xy)+3y^2]
该题为隐函数求导.xy+e^(xy)=1则y+xy'+e^(xy)(y+xy')=0解得:y'=-y/x解答完毕.
即对x求导嘛.即(a*b)'=a'*b+a*b',上式a=x,b=e^-xy,x'=1,e^-xy=-y*e^-xy,整理就得结果啦
答案是1/e当x=1,y=ln(0*1+e)=lne=1所以(0,1)在曲线上.y=ln(xy+e)y'=1/(xy+e)*(y+x*y')y'=y/(xy+e)+x/(xy+e)*y'y'*[1-x
两边求导:e^(xy)*(xy)'-(xy)'=0e^(xy)*(y+xy')-(y+xy')=0ye^(xy)+xe^(xy)*y'=y+xy'x(e^(xy)-1)y'=y(1-e^(xy))y'
隐函数求导,就是先左右一起求微分,加个d,然后写出多少dx+多少dy=0,移项变成dy/dx=多少的形式就好了
xy=e^x-e^yd(xy)=d(e^x-e^y)xdy+ydx=e^xdx-e^ydy(x+e^y)dy=(e^x-y)dx则由dy/dx=(e^x-y)/(e^y+x)
=(-xy)的(5-2)次方=(-xy)的3次方=-x³y³再问:4分之3a的平方b的三次方×(﹣9分之8abc),教我一下吧,明天要考试了再答:(3/4)(a²b
y+x*y'=e^(x+y)*(1+y')∴dy/dx=[e^(x+y)-y]/[x-e^(x+y)].
(xy)'=(e^(x+y)'y+xy'=e^(x+y)*(1+y')y'=[e^(x+y)-y]/[1-e^(x+y)]
对x求导y+x*y'=e^(x+y)*(1+y')y+x*y'=e^(x+y)+e^(x+y)*y'所以dy/dx=[e^(x+y)-y]/[x-e^(x+y)]
xy=e^x-e^y两边求导得:y+xy'=e^x-y'*e^y解得:y'=(e^x-y)/(e^y+x)
先把e^y看成一个整体Ae的xy次方即A^x求导即A^x*lnA=e^xy*lne^y=e^xy*y即y乘以e的xy次方