xy=2y方程的通解是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:05:46
第一题上面已有朋友回答第二题可以先化简得:y'=y^2\(-x+2xy+y^2),也可记为dy\dx=y^2\(-x+2xy+y^2),则dx\dy=(-x+2xy+y^2)\y^2,化简得:dx\d
令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnuxu'=u(lnu-1)du/[u(lnu-1)]=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x
dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为
∵(y^2+xy^2)dx+(x^2-yx^2)dy=0==>y²(1+x)dx+x²(1-y)dy=0==>[(y-1)/y²]dy=[(1+x)/x²]dx
(x³+y³)dx-3xy²dy=0,齐次方程的通解?dy/dx=(x³+y³)/3xy²=(1/3)[(x/y)²+(y/x)]
dy/dx=xy+x+y+1dy/dx=(x+1)(y+1)分离变量dy/(y+1)=dx*(x+1)两边积分ln(y+1)=(x²/2)+x+lnC两边取以e为底的幂y+1=Ce^[(x&
将所给方程写成标准形式y''-y'/x+y/x^2=1/x使用常数变易法,设y=xu1+xlnxu2按照xu1'+xlnxu2'=0①u1'+(lnx+1)u2'=1/x②解得u1'=-lnx/x,u
0和1,两个值再问:求过程。。。。。不用太详细啦,谢谢~再答:用高数知识去做啊
2√(y/x)-y/x+dy/dx=0令y/x=t^2则y=t^2x,dy/dx=2xtdt/dx+t^22t-t^2+2xtdt/dx+t^2=02xdt/dx=-12dt=-dx/x两边积分:2t
设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C
y=(-x^2+Cx)^(1/3),C为任意常数解题步骤:3xy^2dy=(y^3-x^2)dx,(3xy^2)*y'=y^3-x^2,又[(y^3)/x]'=[(3xy^2)*y'-(y^3)]/(
这是什么级别的啊,大学的还是高总的再问:高中的再答:我没办法解决了啊....我是..初中的再问:谢谢,此问题太难了,我放弃了再答:好吧
∵xy'-y-√(y-x)=0==>y'-y/x-√(y/x-1)=0∴设y=xt,则y'=xt'+t代入方程得xt'-√(t-1)=0==>dt/√(t-1)=dx/x==>ln(t+√(t-1))
令y=xuy'=u+xu'代入原方程:[x(u+xu')-xu]cos²u+x=0xu'cos²u+1=0cos²udu=-dx/x(1+cos2u)du=-2dx/x积
dy/dx=(x³+y³)/3xy²=(1/3)[(x/y)²+(y/x)]=(1/3)[1/(y/x)²+(y/x)]令y/x=u,则y=ux,dy
y^2=(xy-x^2)y'(y-1)/y^2dy=dx/x两边积分得lny+1/y=lnx+C再问:不是这个答案哦再答:不是这个也是这个的变形
xy'+y=2x(xy)^2d(xy)/dx=2x(xy)^2d(xy)/(xy)^2=2xdx-1/(xy)=x^2+Cy=-1/(x^3+Cx)
答:xy''-y'=0(xy''-y')/x²=0(y'/x)'=0y'/x=2Cy'=2Cxy=Cx²+K再问:为什么第二步要除以X的平方呢?第三步又是怎么得出来的?对不起我很笨