xy x^2 y^2 的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:52:20
(1)原式=2xy+x(x−y)+y(x+y)x2−y2=(x+y)2(x+y)(x−y)=x+yx−y;(2)原式=2a−(a+2)(a+2)(a−2)a−2(a+2)(a−2)=1a+2;(3)原
∵xyx+y=2∴xy=2(x+y)∴原式=3x−5×2(x+y)+3y−x+3×2(x+y)−y=−7x−7y5x+5y=−75
这个应该没有极限,如果有极限,则沿着任何方向极限应该相同.我们取x=y方向逼进,则极限变成一元极限,很显然当xy->0时,分母为0,分子不为0,这种情况必然没有极限再想想,肯定时楼主输入时没有注意加括
解;已知正数x,y满足,x2+y2=1,则1=x2+y2≥2xy,∴xy≤12…① 又xyx+y=11x+1y≤12 1x•1y=xy2…②①②联立得xyx
figureezmesh('x*y')holdonezmesh('1-x-y')holdoff再问:不是很清楚。这个间距太大了,,可不可以精度大一些。。
∵xyx+y=-2,yzy+z=43,zxz+x=-43,∴1x+1y=-12,1y+1z=34,1z+1x=-34,∴2(1x+1y+1z)=-12,即1x+1y+1z=-14,则xyzxy+yz+
任取ε>0,取δ=ε/7,当0
∵yx>0,且y>0;∴x>0;因此xyx=x×xyx=xy.
令y=kx代入即可知,极限与k有关,因此极限不存在
lim{(x,y)->(0,0)}sin2(x^2+y^2)/(x^2+y^2)=lim{p->0}2sinpcosp/p=2
因为xy≤0.5(x²+y²)所以原式≤0.5x=0
证明函数f(x,y)=(x+y)/(x-y)在点(0,0)处的二重极限不存在.当点(x,y)沿着直线y=kx(k为不等于1的任意实数)趋于(0,0)时,limf(x,y)=lim(x+kx)/(x-k
由(1)、(3)得y=xx−2,z=6xx−3,故x≠0,代入(2)解得x=2710,所以y=277,z=-54.检验知此组解满足原方程组.∴10x+7y+z=0.故选D.
由:fx(x,y)=3x²-8x+2y=0;fy(x,y)=2x-2y=0得:x=y=0;x=y=2fxx(x,y)=6x-8;fxy(x,y)=2;fyy(x,y)=-2fxx(0,0)=
把分式xyx+y中的x和y都扩大2倍后得:2x•2y2(x+y)=4xy2(x+y)=2•xyx+y,即分式的值扩大2倍.故选:B.
x=±1,y=±3,z=±2xyzz>y则0>x>z>yx=-1,y=-3,z=-2,x2y-[4x2y-(xyz-x2z)-3x2z]-2xyx=x2y-4x2y+xyz-x2z+3x2z-2xyx
应该是存在的x^2比x+y更高阶,更快趋近于0所以极限应该是=0的.
lim((x,y)→(0,0))(xy)^2/(x^2+y^2)换元,x=ρcosθ,y=ρsinθ=lim(ρ→0)(ρ^2sinθcosθ)^2/ρ^2=limρ^2*(sinθcosθ)^2因为
解limn→无穷(2)^(1/n)=2^0=1