xsin(1 x)是否连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:14:10
因为lim(x->0)x=0而|sin1/x|≤1即sin1/x是有界函数所以由无穷小与有界函数的乘积是无穷小这个性质,得原式=0
由于被积函数是奇函数被积区间[-1,1]关于原点对称所以积分=0
证明因为:tanx=sinx/cosx所以cosx=sinx/tanx(tanxsinx)/(tanx-sinx)分子分母同时除以tanx=sinx/(1-sinx/tanx)=sinx/(1-cos
=limxsin1/x-limsinx/xx趋近于0=0-1=-1
再问:为啥sin(1/x)一下子变成1/x了?怎么等价变换的?再答:
B这是对等价无穷小的考察.首先知道a是比b高阶的无穷小意思就是lima/b=0所以lim(1-cosx)ln(1+x^2)/xsin(x^n)=01-cosx~x^2/2ln(1+x^2)~x^2si
1.f(x)在x=0的左极限为af(x)在x=0的右极限为-1f(x)在x=0处的极限存在则有左极限=右极限即a=-1故a=-1b取任何值都可以2.函数连续则极限存在且与函数值相等即a=-1=b+1所
求lim{[(sinx)/x]+xsin(1/2x)}(x→∞)用极限的可加性拆成lim(sinx/x)和lim[xsinx(1/2x)]sinx/x,因为x→∞,所以1/x趋向0,sinx在1和-1
lim(sinx/x+xsin(1/x))=lim(sinx/x+sin(1/x)/(1/x))sin(1/x)和1/x是等价无穷小量|sinx|
证明:由于对于任何x都有|sinx|0,即,当x->0时,xsin(1/x)是无穷小.
令u=1/x,u->0,u->0,xsin(1/x)=sin(1/x)/(1/x)=sinu/u->1sinx/x=u*sin(1/u)->0无穷小量与有界函数的乘积还是无穷小量原式=1+0=1
因为奇偶函数在对称区间内的积分有性质:f(x)是奇函数,则∫(a,-a)f(x)dx=0f(x)是偶函数,则∫(a,-a)f(x)dx=∫(a,0)f(x)dx.f(x)=根号x+xsin^2x这个函
y=xsin(1/x)=sin(1/x)/1/x当x无穷大时,1/x无穷接近于0所以y=sin(1/x)/1/x=1/x/1/x=1所以x>0,求y=xsin(1/x)的渐近线是y=1
令a=1/x则a趋于0所以原式=lim(a趋于0)sina/a=1
这三个都是不定式的积分,第一个:limx→0xsin(1/x)=0x是无穷小量;sin(1/x)相当于sin∞,但属于有界变量(±1之间)无穷小量乘以有界变量还是无穷小量,所以极限是0第二个:limx
X趋向于0时,1/x→∞,而sin(1/x)是有界函数因此Xsin(1/X)的极限是0
解:lim(x→无穷)xsin(2x/(1+x^2))=lim(x→无穷)xsin[(2/x)/(1/x^2+1)]=lim(1/x→0)x[(2/x)/(1/x^2+1)]=lim(1/x→0)[2
x趋向于无穷,sinx/x最大也就是1/x,即0x趋向去无穷的时候,sin(1/2x)的极限,相当于1/2x趋向于0时sin(1/2x)的极限,即1/2x(因为有公式,x趋向于0时,sinx趋向于x)
令f(x)=xsin(1/x)lim(x→0)xsin(1/x)=lim(△x→0)((f(x+△x)-f(x))/(x-△x))=(((x+0)sin(1/(x+0))-xsin(1/x))/(x-