xln(1 e^x)在-1到1的定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:33:11
xln(1 e^x)在-1到1的定积分
xln(x+根号1+x的平方)>根号1+x的平方 -1,(x>0)

设f(x)=xln[x+√(1+x²)]+1-√(1+x²),(x>0)f'(x)=ln[x+√(1+x²)]+x*[1+x/√(1+x²)]-x/√(1+x&

求定积分上限e下限1,xln xdx,上限e-1下限1,ln(1+x)dx

定积分上限e下限1,xlnxdx,=∫(1,e)lnxd(x^2)/2x^2/2*lnx|(1,e)-∫(1,e)(x^2)/2dlnx=e^2/2-x^2/4|(1,e)=e^2/2-e^2/4+1

计算积分 上限1 下限0 xln(1+x)dx

是的,我搞错了……再问:嗯嗯。谢谢再答:一开始脑抽筋……

曲线y=xln(e+1/x)(x>0)的斜渐近线方程为(求详细点)

设斜渐近线为y=ax+ba=lim[x→∞]y/x=lim[x→∞]ln(e+1/x)=1b=lim[x→∞][xln(e+1/x)-ax]=lim[x→∞][xln(e+1/x)-x]=lim[x→

求xln(1+x^2)dx的积分

∫xln(1+x^2)dx=(1/2)∫ln(1+x^2)d(x^2)设x^2=u=(1/2)∫ln(1+u)du=(1/2)[uln(1+u)-∫u/(1+u)du]=(1/2)[uln(1+u)-

请问积分∫xln(1+e^x)dx怎么求啊?积分区间是-1到1,.

注意到积分区间是对称的,而且函数ln(1+e^x)比较特殊所以用构造奇函数、偶函数的方法做就很简单了.详解如图:

sin²xln(2+x/2-x)dx -1到1的定积分怎么求啊?

把sin²x变成(1-cos2x)/2,把ln(2+x/2-x)变成ln(2+x)-ln(2-x),把原式拆开,ln与cos相乘的那一项用分部积分,就这样.不懂的话随时问我,我昨天刚考完研.

∫xln(x∧2+1)dx

答:∫ xln(x∧2+1)dx=(1/2) ∫ ln(x^2+1) d(x^2+1)=(1/2)*(x^2+1)*[ln(x^2+1)-1]+C再问:���˵

计算 lim(x-0) [1-cosx]/[xln(1+x)]

利用诺必达法则Lim(sinx/(Ln(x+1)+x/(x+1)))再用一次Lim(cosx/[(1/x+1)+(x+1-x)/(x+1)^2)]=2

用洛必达法则求极限:lim(x→0)xln(e^x-1)

lim(x→0)xln(e^x-1)=lim(x→0)-x²(e^x)/(e^x-1)=lim(x→0)-(x²+2x)=0

求不定积分∫xln(x+1)dx

∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2

y=xln(x+根号下x的平方+1),dy/dx=

x/Sqrt[1+x^2]+ln(x+Sqrt[1+x^2])

求定积分∫ xln(x+1)dx.上限e-1,下限0

先求不定积分,然后再把积分限放上去.∵∫xln(x+1)dx=(x^2)[ln(x+1)]/2-(x^2)/4+C∴∫xln(x+1)dx(0→e-1)这里无法表示定积分=[(e-1)^2]/2-[(

求极限lim{xln(1+2/x)}

题目不完整.缺x趋向?

已知函数y=xln x求函数图像在点x=1的切线方程

此题用到的是原函数的一阶导数就是切线方程的斜率.设所求切线L方程为:y=kx+b,对函数y求导有:y'=lnx+1∴切线方程的斜率为:k=lnx+1,又∵直线L在x=1处与函数y=xlnx相切∴直线L

求曲线y=xln(e+1/x) (x>0)的渐近线方程?

y=2/e求渐近线的方法一般都是求极限.在本题中那当然是算x趋于无穷大时y的值了.将函数的左右两边都加上底数e,则右边就可以去掉对数运算,变成(e+1/e)的x次方.下面就是求它的极限问题了.代换t=

∫xln(x+√(1+x^2))dx

∫xln(x+√(1+x^2))dx=1/2∫ln(x+√(1+x^2))dx^2=1/2ln(x+√(1+x^2))·x^2-1/2∫x^2dln(x+√(1+x^2))=1/2*x^2*ln(x+

渐近线怎么求 Y=xln(e+1/x)

y=xln(e+1/x),函数定义域:x>-1/e,x≠0,显然取等号就是函数的两条件渐近线方程;当x趋于无穷大时,lim(y/x)=lim[ln(e+1/x)]=ln[lim(e+1/x)]=lne