Xi独立且Xi~N(ui,σi²),Z=a1X1服从什么分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:57:20
我爱你
因为X1,X2,…,Xn相互独立,所以D(∑(i从1到n)aiXi)=∑(i从1到n)D(aiXi)=∑(i从1到n)ai^2D(Xi)=∑(i从1到n)ai^2δi^2设L(a1,...,an,λ)
喷香?
因为X1,X2的所有可能取值只能是1和-1所以要使X1X2=-1,只能一个取1,一个取-1,乘起来才能等于-1,因此有第一步P{X1X2=-1}=P{X1=-1,X2=1}+p{X1=1,X2=-1}
依概率收敛到N(λ,λ/n)(根据中心极限定理)再问:这是辛钦大数的题再答:依概率收敛到λ,因为Xi的期望是λ
EXi^2=Cov(Xi)+(EXi)^2=θ^2+μ^2ET=1/n∑i=1到nE(Xi^2)=θ^2+μ^2
香蕉
由林德贝格中心极限定理lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).其中Φ(x)是标准正态分布的分布函数.
中括号后应该有个平方吧?k=1/4,n=1.中括号里是正态分布N(0,4),所以如果表达式是卡方分布的话,那自由度必然为1,而且修正系数k必为1/4再问:答案是对的,不过那个题中的确没有平方,可能是盗
x1^2+x2^2服从自由度2的卡方分布.
鲜是新鲜[xīnxiān]的鲜血是血液[xuèyè]的血所以答案是"鲜血"xiānxuè意思是鲜红的血以后有什么不懂的尽管问!
EX=E(1/n∑xp)=1/n∑E(xp)=μDX=D(1/n∑xp)=1/n²D(∑xp)=1/n²∑D(xp)=σ²/n相关系数就是协方差和2个变量方差的积平方根的
n=n|1|>|x1|+|x2|+...|xn|=19+|x1+x2+...xn|>=19所以n>=20x1=x2=……=x10=19/20x11=x12=……=x20=-19/20成立
dàxióngbǎodiàn.再问:为什么读大?再答:你打一下字就行啦~你这样打:daxiongbaodian哈哈,会有的~大雄宝殿~
给定平面坐标上一系列点(xi,yi)(i=1,2...n),xi各不相同,如果我们用直线段将这些点从左至右连接起来,这些线段下面区域的面积称作覆盖率.现在假定yi(i=1,2...n)的值可以任意互换
记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&
假设n=10,xi在A1:A10、yi在B1:B10.=sumproduct((10-row(1:10))*(A1:A10-B1:B10))再问:你好,谢谢你的回答。可能是我的问题没说清楚我想要的结果
C上(n-1)下(N-1)/C上n下N
cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n所以,选A再问:cov(X1,X2),cov(X1,X3),cov(X1,X4)…cov(