xi是一个同分布的随机变量序列 方差存在 i-j大于2时独立证明xi服从大数分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:24:33
xi是一个同分布的随机变量序列 方差存在 i-j大于2时独立证明xi服从大数分布
n个服从几何分布的独立同分布随机变量,加起来之后的方差怎么求?

几何分布期望为5的话,其参数p=1/5=0.2,对应单个随机变量方差DX=(1-p)/p^2=20从而DY=DX/n=20/n

急求 概率论证明题X1,X2,...,X(n-1)是独立的概率分布相同的随机变量,取值{0,1}, P(Xi=1)=1/

n=2时,p(x1=1)=1/2,∴p(x1=奇数)=1/2,即p(x2=1)=1/2=>p(x2=0)=1-p(x2=1)=1/2,∴n=2时结论成立假设对n结论成立,下面考虑n+1的情况即p(x1

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.

选A要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)当然,D(Xi)存在蕴含了E(Xi)存在简单一点的方法就是排除对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞

概率中心极限定理,如果X1 X2 X3 .Xn是独立同分布的随机变量且具有相

这是三个变量,不是有固定值的数字三个全部服从相同的概率分布举个例子1~10随机抽取个数字X1你其实并不知道X1到底是多少X1服从分布就是以10%的概率取到1~10任何一个数X2如果说和X1的分布相同,

如何判断一个函数是随机变量的分布函数,其特点是什么?

F(x)为分布函数,特征为:1.F(-∞)=0,F(+∞)=1;2.F(X)>=0;3.对于任何x1

设随机变量 Xi 的分布律是

http://hi.baidu.com/zjhz8899/album/item/f0a96a457402d767500ffea7.html

设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x

由林德贝格中心极限定理lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).其中Φ(x)是标准正态分布的分布函数.

设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp

EX=E(1/n∑xp)=1/n∑E(xp)=μDX=D(1/n∑xp)=1/n²D(∑xp)=1/n²∑D(xp)=σ²/n相关系数就是协方差和2个变量方差的积平方根的

独立同分布中心极限定理中的同分布是指相同的离散型随机变量的分布还是相同的连续型随机变量的分布

中心极限定理(centrallimittheorem)是概率论中讨论××随机变量××序列部分和的分布渐近于正态分布的一类定理.这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分

设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知

用定义做就行lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式lim(n->∞)P{[∑(1

随机变量的分布

解题思路:本题主要考查几何槪型的概率的计算,利用向量数量积的意义,确定P的轨迹是解决本题的关键.解题过程:

设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.

记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

关于独立同分布随机变量密度函数的求解

密度函数就是分布函数直接求导来的,你直接相乘没有任何道理,因为这是连续型随即变量不是离散型查看原帖

设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的

注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了

已知随机变量x的分布列是

答案是0.6再问:我填2/3可以吗再答:不行,D(x)就是0.6,要步骤先采纳再问:为什么,我明明算了2/3啊再答:这是一个公式,涉及到一点课外的知识

设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )

cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n所以,选A再问:cov(X1,X2),cov(X1,X3),cov(X1,X4)…cov(

设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X

E(Xn)=0×0.5+2×0.5=1E(X)=∑(1~n)E(Xi)/(3^i)=∑(1~n)1/(3^i)∑(1~n)1/(3^i)是一个等比数列,公比1/3,用等比求和公式得E(X)=1/2D(