xf(x)的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:05:42
凑一下就可以,因为df(x^2)=2xf'(x^2)所以∫xf(x^2)f'(x^2)dx=1/2∫[2xf'(x^2)]*f(x^2)dx=1/2∫f(x^2)df(x^2)=1/2*1/2*[f(
再答:注意xsinx的积分哦再答:再问:特别好,谢谢再答:不用谢,能帮到你我很开心再答:祝你天天开心,也祝我天天开心
∫f(x)=x²lnxf(x)=lnx*2x+x²*1/x=2xlnx+x∫xf(x)dx=∫x*(2xlnx+x)dx=2∫lnxd(x³/3)+∫x²dx=
由于f(x)的一个原函数arcsinx所以∫f(x)dx=arcsinx+Cf(x)=(arcsinx)'=1/根号(1-x²)∫xf'(x)dx=∫xd(f(x))=xf(x)-∫f(x)
∫xf(x^2)dx=1/2∫f(x^2)d(x^2)=1/2*e^(-x^2)+c
∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-sinx/x+Cf(x)=(sinx/x)'=(xcosx-sinx)/x^2带进去就可以了
若已知f(x)的原函数为F(x),F(x)的原函数为G(x),则可用分部积分法求:∫xf(x)dx=xF(x)-∫F(x)dx=xF(x)-G(x)+C
令F1=∫f(x)dx,使用分部积分法知F1=f(x)*x-∫xdf(x)+C(C为任意常数),则题目中所求不定积分为F=F1+∫xf'(x)dx=F1+∫xdf(x)=f(x)*x+C
f'(x)=cos2x*2=2cos2x∫xf''(x)dx=∫xdf'(x)=xf'(x)-∫f'(x)dx=xf'(x)-f(x)+C=2xcos2x-sin2x+C
∫[f(x)+xf'(x)]dx=∫f(x)dx+∫xf'(x)dx=∫f(x)dx+∫xdf(x)=∫f(x)dx+xf(x)-∫f(x)dx=xf(x)+C.
∫f(x)dx=(1/x)e^xf(x)=(xe^x-e^x)/x²=(1/x²)(x-1)e^x∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=(1/x)(x-1
∫f(x)dx=ln²x=>f(x)=(2lnx)/x∫xf'(x²+1)dx,令u=x²+1,du=2xdx=>dx=du/(2x)=∫x*f'(u)*du/(2x)=
∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-∫dF(x)=xf(x)-F(x)+C
因为定积分∫(0,1)xf(x)dx是一个常数,因此设C=∫(0,1)xf(x)dx∴f(x)=x∧2+C.①两边同时取定积分(上限1,下限0),得∫(0,1)f(x)dx=∫(0,1)x∧2dx+∫
由题意,得:∫xf'(x)dx=xf(x)-∫f(x)dx=xf(x)-e^xcosx+C
∫xf’(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=x(sinx/x)'-sinx/x=x*(cos(x)/x-sin(x)/x^2)-sin(x)/x=1/x*(cos(x)*x-2*s
f(x)=(sinx/x)'=(xcosx-sinx)/x^2∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-sinx/x+C=(xcosx-sinx)/x-sinx/x+
选C.因为∫f(x)dx=F(x)+C,所以∫(1-x^2)d(1-x^2)=(1-x^2)+c所以原式=-1/2∫(1-x^2)d(1-x^2)=-1/2F(1-x^2)+c