xf(x) ln(1-2x) x^2=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:07:53
两边求导,再除以x就可以了
∵f(x)=ln(x+√(1+x²))∴f'(x)=[ln(x+√(1+x²))]'=(1+x/√(1+x²))/(x+√(1+x²))=((x+√(1+x
答案4是错误的解法一:ln(1+2x)~2x(x→0) lim[ln(1+2x)+xf(x)]/(x^2)=2(x→0) lim[2x+xf(x)]/(x^2)=2(x→0)&nb
limx→0[xf(x)-ln(1+x)]/x^2=2[xf(x)-ln(1+x)]/x^2=2+aa是一个无穷小量,limx→0a=0这就相当于limx→0f(x)=A那么f(x)=A+aa是一个无
limx[ln(2x+1)-ln(2x)]=limx[ln(2x+1)/2x]=limln[1+1/2x]^x=limln[1+1/2x]^(2x.1/2)=limlne^(1/2)=1/2
把每一项写成1-1/(n+1)于是左边=(1-1/2)+(1-1/3)+…+(1-(n+1))=n-(1/2+1/3+…1/(n+1))剩下你知道了吧
答:∫f(x)dx=(lnx)^2+C(1---e)∫xf'(x)dx=(1---e)∫xd[f(x)]=(1---e)xf(x)-∫f(x)dx分部积分=(1---e)xf(x)-(lnx)^2=[
∫1/xf(lnx)dx=∫f(lnx)dlnx=F(lnx)+C
∫f(x)dx=ln²x=>f(x)=(2lnx)/x∫xf'(x²+1)dx,令u=x²+1,du=2xdx=>dx=du/(2x)=∫x*f'(u)*du/(2x)=
我综合了别人的一些方法,现在解法如下:此题先用泰勒公式在0点展开,到三阶导数:ln(1+x)=x-(1/2)x^2+(1/3)x^3+o(x^3)ln(1-x)=-x-(1/2)x^2-(1/3)x^
如果感觉还好,
∫xf(x)dx=ln|x|+Cxf(x)=d/dx(ln|x|+C)=d/dxln|x|当x>0,d/dxln|x|=d/dxln(x)=1/x当xxf(x)=1/x==>f(x)=1/x²
因为f(x)的原函数为ln(1+x^2)设F(x)=ln(1+x^2)F'(x)=f(x)=2x/(1+x^2)∫xf'(2x)dx=xf(2x)/2-∫f(x)dx=xf(2x)/2-F(x)=2x
汗!按照你的说法,f(x)/x极限肯定不存在!因为lim[2+f(x)]/x=2其中2/x极限是不存在的,这应该是个无穷-无穷的极限.应该lim[ln(1+2x)-2x+2x+xf(x)]/x^2=2
答案:6解法:lim_{x→0}{x[f(x)-2]+2x+ln(1-2x)}/x^2=lim_{x→0}{x[f(x)-2]}/x^2+lim_{x→0}{2x+ln(1-2x)}/x^2=4,又l
用分部积分∫xf'(x)dx=∫xdf(x)=f(x)x-∫f(x)dx=f(x)x-ln(x)/x+Cf(x)=ln(x)/x的导数=(1-lnx)/x^2代入上式.
∫f(x)/xdx=ln[x+√(1+x²)]+Cf(x)/x=d/dx{ln[x+√(1+x²)]+C}=1/√(1+x²)f(x)=x/√(1+x²)---
f(x)=(sinxlnx)'=cosxlnx+sinx/x原式=∫(π,1)xdf(x)=xf(x)(π,1)-∫(π,1)f(x)xdx=x(cosxlnx+sinx/x)(π,1)-sinxln