x=acos*3t y=bsin*3t
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:39:01
通过给定的的a和x求所得椭圆上一点到原点的连线和x轴正方向的夹角
x=cos³ty=acos³t曲线方程y=ax这是一条直线,所以曲率为零.
x=acosθcost-bsinθsint.y=acosθsint+bsinθcost
若积分域能围成闭区域,就可用格林公式:L:{x=acosθ{y=bsinθ面积=∫∫Ddxdy=(1/2)∮Lxdy-ydx=(1/2)∫(0→2π)[(acosθ)(bcosθ)-(bsinθ)(-
椭圆x=acosφy=bsinφ(a>b>0),可化为:x2a2+y2b2=1(a>b>0)如图设椭圆与正三角形另两条边的交点分别是A,B,连AF2,由题设条件知|AF1|=12|F1F2|=c,∠F
(dy/dt)/(dx/dt)为一导,(dy/dt)/(dx/dt)对t的导数比上(dx/dt)为二导.再问:谁不会方法呀!我求过程呀!再答:呵呵!方法会,怎么能不会过程呢?你开玩笑吧!过程就是通过方
∵x∈[0,π2],∴2x+π3∈[π3,4π3],∴-1≤cos(2x+π3)≤12,当a>0时,-a≤acos(2x+π3)≤12a,∵ymax=4,∴12a+3=4,∴a=2;当a<0时,12a
用格林公式求星型线x=acos³t,y=asin³t的面积.S=(1/2)∮xdy-ydx=[0,2π](1/2)∫(3a²cos⁴tsin²t+3
确实是只要计算第一象限部分的长度,再乘以4即可首先,弧微分ds=√[(dx)^2+(dy)^2]=√[(x')^2+(y')^2]dt=3a|sintcost|dt,x'、y'表示求导其次,弧长s=4
左边分子分母同除cosa,右边有正切公式展开.
由题意β-α=π6则β=α+π6两边求正切得到:tanβ=tan(α+π6)=tanα+tanπ61-tanαtanπ6=tanα+331-33tanα=asinα+bcosαacosα-bsinα=
速度对时间求一次导数dx/dt=-aωsinωtdy/dt=bωcosωt加速度是时间得二阶导数d(dx/dt)/dt=-aω^2cosωtd(dy/dt)/dt=-bω^2sinωt
应该就是y=kx+b,这是一次函数代数式,求k的只有两种,一种代入两点求解,一种是斜率,带入坐标求点:(0,-3)与点(1,0)代入直线Y=KX+B中解得Y=3X-3,斜率是K=tanα(与X轴,y轴
=acosωti+bsinωtjv=dr/dt=-aωsinωti+bωcosωtj角动量L=r×p=r×mv=m(acosωti+bsinωtj)×(-aωsinωti+bωcosωtj)=m(ab
=acosωti+bsinωtjv=dr/dt=-aωsinωti+bωcosωtj角动量L=r×p=r×mv=m(acosωti+bsinωtj)×(-aωsinωti+bωcosωtj)=m(ab
=acosωti+bsinωtjv=dr/dt=-aωsinωti+bωcosωtj角动量L=r×p=r×mv=m(acosωti+bsinωtj)×(-aωsinωti+bωcosωtj)=m(ab
y=acosx=bsin+cc为平行偏移量
x/acosθ+y/bsinθ=1x^2/a^2cosθ^2+y^2/b^2sinθ^2+2xy/absinθcosθ=1x/asinθ-y/bcosθ=1x^2/a^2sinθ^2+y^2/b^2c
(1)把r=acosωti+bsinωtj对时间t求导得(一看就知道这是个椭圆运动,且机械能守恒)速度矢量v=-aωsinωti+bωcosωtj动能Ek=0.5mv^2=0.5m[a^2ω^2sin