x1x2x3来自总体N(0,1),1 √3(X1 X1 X3)~N(0,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:10:39
a=4..再问:��Ĺ����>再答:��������ֲ�Ҫ�����DZ���̬�ֲ�Xi/0.5~N(0,1)Xi^2/0.25=a*Xi^2a=4
这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1
服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.
所求数学期望与X~N(0,1)的数学期望相同,为0.
服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√
X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)
E(X1-X2+X3-X4)=0D(X1-X2+X3-X4)=4D(X)=4χ²(1)D(√c(X1-X2+X3-X4))=c4=1c=1/4如有意见,欢迎讨论,共同学习;如有帮助,
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
依概率收敛于E(X²)=D(X)+E²(X)=2+4=6E[Σ(Xi-X均值)²/(n-1)]=s²=no²/(n-1)E[Σ(Xi-X均值)
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4
答案是0.5013总体X~N(2,1),X1,X2…X9是来自总体X的一个样本,则可知X平均~N(2,1/9)从而X平均在区间[1,2]中取值的概率是P(1≤X平均≤2)=P((1-2)/(1/3)≤
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E
X1,X2.Xn来自总体为N(0,σ^2)=>∑xi~N(0,nσ^2)=>∑xi/√(nσ^2)~N(0,1)=>[∑xi/√(nσ^2)]^2~x^2(1)=>C=nσ^2
x1x2……x2000-x2001x2002……x2011=1=x1x2……x1999-x2000x2001……x2011x1x2……x2000+x2000x2001……x2011=x1x2……x19
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X
X:自由度n=3,标准化Xi即Xi=Xi/σ,χ2(3)=(X1^2+X2^2+X3^2)/σ^2Y:因为已知均值,故自由度n=4-1=3,同理χ2(3)=((Y1-A)^2+(Y2-A)^2+(Y3
主要涉及更高的概率论,测度论,坏的类型,在这个粗略的告诉我首先构建在R的概率测度P1(N(0,1)分布),无论是A属于B(R),这样的P(A)=N(01)在A点的密度,概率空间(R,B(R),P1)从