x1.x2--x2017都是1或-1,证明x1 2x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:11:59
(x1+1/x1)-(x2+1/x2)=(x1-x2)+(1/x1-1/x2)第一步:(x1+1/x1)-(x2+1/x2)去括号得x1+1/x1-x2-1/x2第二步:x1+1/x1-x2-1/x2
已知X1、X2(X1〈X2)是二次方程X^2-(m-1)X+n=0③的两个实数根,Y1、Y2是方程Y^2-(n+1)Y-6m=0⑤的两个实数根所以X1+X2=m-1,X1*X2=n,Δ=(m-1)^2
(1+x1)(1+x2)……(1+xn)>=2√(1*x1)*2√(1*x2)*……2√(1*xn)=2^n*√(x1*x2*x3……xn)=2^n*1=2^n
(1+X1)·(1+x2)·(1+X3)·(1+Xn)=1+x1+x1x2+x1x2x3+…+x1x2x3…xn由于X1·X2·X3·…·Xn=1,所以上式)≥2
数学归纳法:1.n=1时,x1∈(0,+∞),且x1=1,则1+x1=2≥2^1=2,成立;2.假设n=k(k∈N)时不等式成立,即x1,x2,x3,…,xk∈(0,+∞),(即数列中的元素为正),且
和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2
最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2
证明:x1x2,x2x3,x3x4…xnx1不是1就是-1,设这n个数中有a个1,b个-1,则a+b=n,a×1+b×(-1)=a-b=0,所以得:n=2b,又因为(x1x2•x2x3…xnx1)=1
x1=3/2;x2=x1/2;printf("%f\n",x1);你会发现x1就等于1因为x1=3/2;3和2都是整型,除下来结果也为整型,是1,然后赋值给float,变成1.0
和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2
提取公因式(x1-x2)
我觉得应该是这样x1^2+x2^2+x3^2+x4^2+x1x2+x1x3+x1x4+x2x4+x3x4=1/2(x1+x2)^2+1/2(x1+x3)^2+1/2(x2+x4)^2+1/2(x3+x
题目错的.只要,Xa=+1,a为1-1004内的奇数,Xb=-1,b为1-1004内的偶数,Xm=+1,m为1005-2008内的偶数,Xn=-1,n为1005-2008内的奇数,那么,x1+2x2+
Xn/(x1+x2+...Xn-1)(X1+X2...+Xn)=1/(x1+x2+...+xn-1)-1/(x1+x2+...+xn-1+xn)所以原式=1/x1-1/(x1+x2)+1/(x1+x2
令a=(1+x1)(1+x2)(1+x3)(1+x4)用x1x2x3x4=1替换里面的1a=(x1x2x3x4+x1)(x1x2x3x4+x2)(x1x2x3x4+x3)(x1x2x3x4+x4)=x
提取公因式(x1-x2)原式=(x1-x2)]1-4/x1x2]
x1³+x2³=(x1+x2)(x1²-x1*x2+x2²)=(x1+x2)[(x1+x2)²-3x1*x2]=3×(3²-3×1)=3×6
1.∵X1,X2,…Xn都是正数,根据重要不等式1+x1≥√x11+x2≥√x2……1+xn≥√xn∴n个不等式左右相乘有(1+X1)(1+X2)…(1+Xn)≥2^n√x1√x2√xn=2^n√x1