x1,x2......xn为来自总体X的一组观察样本,概率密度函数为f(x,)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:50:35
x1,x2......xn为来自总体X的一组观察样本,概率密度函数为f(x,)
样本(x1,x2,…xn)的平均数为.x

∵依题意nx+my=(m+n)[λx+(1-λ)y],∴n(x-y)=λ(m+n)(x-y),x≠y,∴λ=nn+m∈(0,12),m,n∈N+,∴2n<m+n,∴n<m.故答案为:n<m.

设{xn}为有界正实数列,求lim xn/(x1+x2+…xn) (n趋近于无穷)

limxn/(x1+x2+…xn)=0因为xn是一个有限的正实数,而(x1+x2+…xn)趋近于无穷,所以xn/(x1+x2+…xn)趋近于0.再问:不一定趋于无穷哦,比如1/2^n再答:是我没有考虑

已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+

x1x2..xn均为整数应是x1x2..xn均为正数吧,由均值不等式得:(x2/√x1)+√x1≥2√x2,(x3/√x2)+√x2≥2√x3,...(x1/√xn)+√xn≥2√x1,把上面n个不等

记实数x1,x2.xn中的最大数为max{x1,x2.xn}.最小数为min{x1,x2.xn}

必要不充分必要性:∵三角形ABC为等边三角形max{a/b,b/c,c/a}=min{a/b,b/c,c/a}=1∴I=1不充分充:存在不为等边三角形的三角形ABC,其中a=3,b=2,c=2使得l=

x1,x2...xn中最大数为max{x1,x2,…,xn}最小数为min{x1,x2,…,xn} 则max{min{x

答案:6-根号5【提示】画出三个函数的图像,数形结合比较简便.再问:对不起,我没把选项打上。可是这四个选项里没有啊?A.0.75B.1C.3D.3.5再答:我的图画错了,选D图中,褐色曲线即为:min

已知x1,x2,………xn均为正数,求证:x2/√x1+x3/√x2+……x1/√xn≥√x1+√x2 + ……√xn

x2/√x1+√x1≥2√x2x3/√x2+√x2≥2√x3.x1/√xn+√xn≥2√x1全部相加得:(x2/√x1+x3/√x2+……x1/√xn)+√x1+√x2+……√xn)≥2(√x1+√x

X1,X2...Xn相互独立,都为参数为a的指数分布,求X1+X2+...+Xn的分布?

伽马分布Ga(n,a)再问:能详细点吗给出步骤或者思路或者参考资料谢谢再答:指数分布Exp(a)是特殊的伽马分布Ga(1,a),在伽马分布的可加性得X1+X2+...+Xn~Ga(n,a)伽马分布可加

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

记min{x1,x2,x3…,xn}为x1,x2,…xn中最小的一个

记min{x1,x2,x3.xn}为x1,x2,x3.xn中的最小者,设f(x)=x2x,g(xh(x)=f(x)当x《-1h(x)=g(x)当-1

(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+

令x2+x3+...+xn-1=A(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)=(x1+A)(A+

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设x1,x2,…,xn平均数为.x

根据方差的意义知,方差为0,则没有波动,故有:x1=x2=…=xn.故填x1=x2=…=xn.

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

X2/X1(X1+X2)+X3/(X1+X2)(X1+X2+X3)+.Xn/(x1+x2+...Xn-1)(X1+X2.

Xn/(x1+x2+...Xn-1)(X1+X2...+Xn)=1/(x1+x2+...+xn-1)-1/(x1+x2+...+xn-1+xn)所以原式=1/x1-1/(x1+x2)+1/(x1+x2

用琴森不等式证明((x1+x2+...+xn)/n)^(x1+x2+...+xn)

两边取自然对数,并同除以n,只要证明(x1+x2+...+xn)/n*log[(x1+..+xn)/n]

已知x1+x2+x3+.+xn的平均数为3,那么x1+2+x2+2+x3+2+.+xn+2

已知x1+x2+x3+.+xn的平均数为3,那么x1+2+x2+2+x3+2+.+xn+2的平均数是多少?(x1+x2+...+xn)/n=3(x1+x2+...+xn)=3n(x1+2+x2+2+.

9x1,9x2.9xn的方差为s的平方,则x1,x2.xn的方差为

由题意:s²=(1/n)[(m-9x1)²+(m-9x2)²+……+(m-9xn)²]其中m是9x1,9x2.9xn的平均数x1,x2.xn的方差为t²