x1,x2,x3是方程x*x*x-4x*x 4x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:03:28
算出行列式的值,再整理成只和x1+x2+x3,x1x2+x2x3+x3x1,x1x2x3这三项有关的形式,利用三次方程韦达定理带入系数可求.
答案:100/3由M是x1+x2,x2+x3,x3+x4,x4+x5中的最大值得到,x1+x2
∵f(x)是奇函数,∴f(x)一定过原点.∵方程f(x)=0有且仅有3个实根x1、x2、x3,∴其中一个根为0,不妨设x2=0.∵f(x)是奇函数.∴方程的两个根关于原点对称,即x1+x3=0.∴x1
行列式展开=x1^3+x2^3+x3^3-3x1x2x3而x1^3+x2^3+x3^3-3x1x2x3=(x1+x2+x3)(x1^2+x2^2+x3^2-x1x2-x2x3-x3x1)(展开右边即得
1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5
x1x2x3x3x1x2x2x3x1c1+c2+c3x1+x2+x3x2x3x1+x2+x3x1x2x1+x2+x3x3x1r2-r1,r3-r1x1+x2+x3x2x30x1-x2x2-x30x3-
此题运用的是韦达定理的推广.在2次方程情形,韦达定理有一个结论是两根之和等于(-b/a),推广到3次方程有三根之和:x1+x2+x3=-b/a(其中a为最高次项系数,b为次高项系数,依此类推,初等代数
由韦达定理,得:x1+x2+x3+x4=0将行列式的2,3,4行都加到第1行,则第1行4个数都为x1+x2+x3+x4因此D=0(x-x1)(x-x2)(x-x3)(x-x4)=0展开:x^4-(x1
5式相加,3(x1+x2+x3+x4+x5)=1+5-5-3+2=0所以x1+x2+x3+x4+x5=0X1+X2+X3=5,X4+X5+X1=-3,两式相加:X1+(X1+X2+X3+X4+X5)=
(1)平均数为x拔+a(2)平均数为bx拔(3)平均数为bx拔+a对于数据整体变化一致(每个数据做相同变化)的情况,新平均数相对原平均数的变化和整体变化相同
x1.x2是方程2x²-x-3=0的两实根∴x1+x2=1/2x1x2=-3/2∴x1+x2+x1*x2=1/2-3/2=-1
(0,1)因为设f(x)=x^3-3x+1,则f(-2)=(-2)^3-3(-2)+1=-10f(0)>0f(1)=-10所以在区间(-2,-1),(0,1)和(1,2)都有零点f(1.5)=3.37
就有一个函数,然后求什么的呢?建议你把题目好好写清楚在问,我们都会尽力为你解答的再问:谢谢,非线性多元回归求解x,如何线性化呢?主要是x1*x3和x2*x3项如何线性化的问题,急请教!
算出行列式的值,再整理成只和x1+x2+x3,x1x2+x2x3+x3x1,x1x2x3这三项有关的形式,利用三次方程韦达定理带入系数可求.
∵方程(x-1)(x2+8x-3)=0的三根分别为x1,x2,x3,∴x1=1,x3+x2=-8,x3•x2=-3,则x1x2+x2x3+x3x1=x1(x2+x3)+x2x3=-3-8=-11.故选
X1+X2>0x1>-X2因为f(x)在R上单调递减,所以f(x1)>f(-x2)因为f(x)在R上是奇函数,则有f(-x2)=-f(x2)所以,f(x1)>-f(x2)即f(x1)+f(x2)>0同
-5由韦达定理:x1+x2+x3=0,x1x2+x1x3+x2x3=-1,x1x2x3=-1又x^3-x+1=0,所以x^5=x^2x^3=x^2(x-1)=x^3-x^2=x-1-x^2所以x1^5
x1+x4=2x1+3dx2+x3=2x1+3dx2+x3=x1+x4x1,x4是方程2x²+3x-1=0的两根,由韦达定理得x1+x4=-3/2x2+x3=-3/2
3x²-7x+2=0)3x-1)(x-2)=0x1=1/3,x2=2所以x1+x2=7/3