X1,X2,X3,X4X,X5X,X6 随机样本cY~t(3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:21:45
X1,X2,X3,X4X,X5X,X6 随机样本cY~t(3)
如果自然数xi满足x1+x2+x3+x4+x5=x1x2x3x4x5,求x5的最大值.

∵自然数xi满足x1+x2+x3+x4+x5=x1x2x3x4x5,∴x1,x2,x3,x4,x5都是正整数,不妨设1≤x1≤x2≤x3≤x4≤x5,若除了x5其他全是1,∴4+x5=x5,∴不可;∴

已知x1,x2,x3,x4,x5是非负实数,且x1+x2+x3+x4+x5=100,M是x1+x2,x2+x3,x3+x

答案:100/3由M是x1+x2,x2+x3,x3+x4,x4+x5中的最大值得到,x1+x2

已知正整数x1 、 x2 、x3 、 x4 、 x5、,且x1 + x2 + x3+ x4 + x5= x1 x2 x3

由于等号两边都是轮换对称式,故x1到x5的地位都是相同的.不妨设x1≤x2≤x3≤x4≤x5则有:x1+x2+x3+x4≤4x5原式变换后代入:x1+x2+x3+x4=(x1x2x3x4-1)x5≤4

以知x1 x2 x3 x4 x5 x6

a=[(x4+x5+x6)-(x1+x2+x3)]/(9*t^2)那就是后4个或2个减前4个或2个,下面9的地方就分别是4^2(16)和2^2(4)

min= X1+X2+X3+X4+X5

(1)先把模型化成单纯形法所需的模型,因为约束条件都是等号且没有单位向量,所以加上人工变量,化成后的模型如下.min=x1+x2+x3+x4+x5+M*x6+M*x7+M*x8x1+x2+x6=100

关于二元一次方程组若X1,X2,X3,X4,X5满足下列方程组:2X1+X2+X3+X4+X5=6X1+2X2+X3+X

2X1+X2+X3+X4+X5=6①X1+2X2+X3+X4+X5=12②X1+X2+2X3+X4+X5=24③X1+X2+X3+2X4+X5=48④X1+X2+X3+X4+2X5=96⑤①+②+③+

已知x1+x2+x3+x4+x5+x6+x7=2010,且x1+x2=x3,x2+x3=x4,x3+x4=x5,x5+x

x4=x1+2x2x5=x1+2x2+x1+x2=2x1+3x2x6=x4+x5=3x1+5x2x7=x5+x6=5x1+8x2x1+x2+x3+x4+x5+x6+x7=x1+x2+x1+x2+x1+

若X1,X2,X3,X4,X5 满足方程组:

①+②+③+④+⑤(等号左边、右边各相加)得到:6*(x1+x2+x3+x4+x5)=6+12+24+48+96x1+x2+x3+x4+x5=(6+12+24+48+96)/6x1+x2+x3+x4+

设X1、X2、X3、X4、X5均为自然数,且X1+X2+X3+X4+X5=X1*X2*X3*X4*X5 求X5的最大值

1+1+1+1+5=1*1*1*1*51.01+1.01+1.01+1.01+99.497561940310821517382150186644=1.01*1.01*1.01*1.01*99.4975

解方程组X2+X3+X4=1 X1+X2+X3=5 X3+X4+X5=-5 X4+X5+X1=-3 X5+X1+X2=2

5式相加,3(x1+x2+x3+x4+x5)=1+5-5-3+2=0所以x1+x2+x3+x4+x5=0X1+X2+X3=5,X4+X5+X1=-3,两式相加:X1+(X1+X2+X3+X4+X5)=

求齐次方程组的的一般解(x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,x1+2x3+2x4+

先将其写成矩阵的形式,然后化简成阶梯形,可知其有两个基础解系,化简结果第一行(1.0.0.-1.-5)第二行(0.1.0.2.6)第三行(0.0.6.0.0)第四行全是零,得基础解系是(1.-2.0.

简单线代题///X1+X2+X3+X4+X5=13X1+2X2+X3+X4+3X5=0 X2+2X3+2X4+6X5=3

1111111111113211300122030122630000605433-1p00000p-2所以p=2时有解p不等于2时无解

求齐次线性方程组x1+2x2+x3+x4+x5=1 2x1+4x2+3x3+x4+x5=2 -x1-2x2+x3+3x4

增广矩阵=121111243112-1-213-350024-26用初等行变换化为行最简形12002-10010-11000101000000一般解为:(-1,0,1,1,0)^T+k1(-2,1,0

若X1~X5满足下列方程组:2乘X1+X2+X3+X4+X5=6,X1+2乘X2+X3+X4+X5=12,X1+X2+2

先将5个方程相加,除以6,得到X1+X2+X3+X4+X5=某个数然后再依次减去前面的.

解一道方程组x1+x2+x3=5,x2+x3+x4=1,x3+x4+x5=-5,x4+x5+x1=-3,x5+x1+x2

有一种解法:(先把这五个式子依次称作①、②、③、④、⑤式)将这五个式子叠加、整理,可得x1+x2+x3+x4+x5=0------⑥,然后就可以随便做了如:⑥-①得:x4+x5=-5-------⑦④

5.若x1、x2、x3、x4、x5满足下列方程组:

2x1+x2+x3+x4+x5=61式x1+2x2+x3+x4+x5=122式x1+x2+2x3+x4+x5=243式x1+x2+x3+2x4+x5=484式x1+x2+x3+x4+2x5=965式1

X1 - X3 - X4 -5X5=0 X1+2X2+3X3+3X4+7X5=0 X1+X2+X3+X4+X5=0 X2

应该是无有无穷解的.第三个和第四个方程都分别和第一个第二个线性相关,所以相当于是只有第一个和第二个方程.五个未知数,两个方程,结论便是无穷个解.随意定下其中三个,就能得到一个解.

有整数x1,x2,x3,x4,x5,x6,x7.x1

13x1+20x2=2010x1+x2+x3=2(x1+x2)=(2010+7x1)/10=201+0.7x1因为x1x2x3都为自然数固设x1=10k∴x1