X1,X2, Xn 来自指数分布的简单随机样本 其密度为 求矩估计与极大似然估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:26:20
写得不是很规范,大概思路是这样.再问:原来是我算错了,没用1减概率==感谢
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
伽马分布Ga(n,a)再问:能详细点吗给出步骤或者思路或者参考资料谢谢再答:指数分布Exp(a)是特殊的伽马分布Ga(1,a),在伽马分布的可加性得X1+X2+...+Xn~Ga(n,a)伽马分布可加
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
记min{x1,x2,x3.xn}为x1,x2,x3.xn中的最小者,设f(x)=x2x,g(xh(x)=f(x)当x《-1h(x)=g(x)当-1
x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|
样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!
这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式
min{max{a+b,b+c,c+a}}=min{max{1-c,1-a,1-b}}=min{1-min{c,a,b}}=1-max{min{c,a,b}}=1-1/3=2/3
两边取自然对数,并同除以n,只要证明(x1+x2+...+xn)/n*log[(x1+..+xn)/n]
均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n