x1 x5来自总体n01简单随机样本y=cx1 x2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:55:11
x1 x5来自总体n01简单随机样本y=cx1 x2
关于概率论的一道计算X1,X2.X2n 是来自正态总体(u,σ^2) 的一个简单随机样本,其样本均值为X,=1/2n(∑

哎呀,这是考验真题,你没答案么?我记得是零几年的考研数一原题,你去找找答案吧?我这给你打也太麻烦点了再问:�ܸ��ҽ���˼·ô��ʲôһ��һ��再答:�Ҽǵ��кü��ַ��������õ����

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

卡方分布如何求自由度设X1,X2,X3,X4是来自正太总体N(0.4)的简单随机样本,X=a(X1-2X2)^2+b(3

自由度肯定是2,就是可以转化成两个标准正太分布的平方之和,a,b都是来让后边的两个分布都等于标准正太分布的.再问:我自己已经做出来了,不过分还是给你好了……

设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

【概率论】X1,X2,X3...X9来自正态总体x的随机样本

这个i是不是7到9啊?因为X1到X9~N(0,1)所以Y1=1/6(X1+...+X6)~N(0,1/6)这个知道吧就是1/n∑xi~N(μ,σ^2/n)Y2~N(0,1/3)推出√2*(Y1-Y2)

大学概率与数理统计设X1,X2,.X9是来自正态总体N(μ,4)的简单随机样本,X拔是样本均值,一直P{|X拔-μ|

o=根号4=2n=9P{|X拔-μ|/(o/根号n)再问:额,我们还没讲过置信区间,μ=1.3067,答案再答:我后头不是给你写了步骤了3o换成o/3除写成乘了。。。μ/(o/3)=1.961.96*

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

)设X服从N(0,1),(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本,Y=(X1+X2+X3+)^2

(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

简单随机抽样和分类抽样分别举例说明他们适用于什么样的调查总体

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位.特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独立,彼此间无一定的关联性和排斥性.简单随机抽样是其它各种抽样形式的基础.通常只

样本方差 总体方差假定X1,X2,...,Xn为来自总体的重置简单随机样本,总体均值为μ、方差σ^2,Xˉ为样本均值.由

首先有结论:当诸Xi相互独立时,Var(∑Xi)=∑Var(Xi),证明的话用协方差Var(∑Xi)=Cov(∑Xi,∑Xi)=∑Cov(Xi,Xj)=∑Var(Xi)然后可得到:Var(1/n·∑X

设X1,X2……Xn为来自总体(10)的简单随机样本,则统计量服从的分布为(

样本均值的期望等于总体期望,此题中为np样本方差的期望等于总体方差,此题为np(1-p)所以t的期望等于np-np(1-p)np(1-p)

论述题:什么是简单随机抽样和分类抽样?分别举例说明它们适用于什么样的调查总体?

简单随机抽样,也叫纯随机抽样.就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位.特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独立,彼此间无一定的关联性和排斥性.简单随机抽样是

概率及统计高手进,设x1 x2 .x9 来自正态总体N(0,4)的简单随机样本,求系数a,b,c使

x1+x2~N(0,8)x3+x4+x5~N(0,12)x6+x7+x8+x9~N(0,16)由于x^2分布定义为标准正态分布的平方和,因此a(x1+x2),b(x3+x4+x5),c(x6+x7+x