x1 x2.xn来自正态分布的样本 求极大似然估计值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:24:57
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
首先考虑两个的情况,如果证明了y=ax1+bx2是两个正态的和,也是正态的,接下来就直接用归纳法证毕,因为比如3个和的情况就是ax1+bx2+cx3=y+cx3也是两个正态的和,因此正态.n就能退化到
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
不知你能否看到图片.都写在图片里了.很久没做概率题了.
B(10,p),则E(X)=10p,D(X)=10p(1-p)E(X拔)=E(1/n*(X1+X2+^+Xn))=1/n*[E(X1)+E(X2)+^+E(Xn)]=1/10*10*E(X)=10pD
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
平均数为2+8=10方差不变,仍为3再问:求过程。
正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)
亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!
根据就是正定二次型的定义根据正定二次型的定义,对于任意不全为0的x1,x2……xn,有F(X1,X2,……xn)>0而题目中,很明显存在一个非0的x=[1,-1,0,0,0,...0],使F(x1,x
这三个分布都是基于正态分布变形得到的,在实际中只能用来做假设检验.比如,已知样本X都是服从正态分布的样本,而且方差未知,那么,检验X的均知就会用到t分布,其他的情况也类似,可以看看数理统计相关内容
取对数,原不等式等价于x1lnx1+x2lnx2+...+xnlnxn≥(x1+x2+..+xn)(lnx1+lnx2+...+lnxn)/n即n(x1lnx1+x2lnx2+...+xnlnxn)≥
x1x2+x2x3+````+xn-1xn≤((n-1)/n)(x1^2+x2^2+````+xn^2)当且仅当n=2时不等式成立,证明:n=2时,不等式等价于(x1-x2)^2/2≥0成立.n≥3时
当然也可用辅助函数法(二重积分换元)直接得出倒数第三行的公式.