X,Y相互独立,服从参数为λ的泊松分布,证明Z=X Y服从参数为2λ的泊松分布.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:38:37
X~π(a)Y~π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k
fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ
提示:假设Z=min(X,Y)Pr[Z
若是没有记错的话,虽然卷积公式在连续型随机变量中提出来,但是有说过对于离散型随机变量也可使用,把那个积分改成求和就行了再问:能具体为我证明此题吗?谢谢再答:不知道公式怎么打,只能简要说一说:因为X、Y
解 实际上本题就是不用计算也能得出所求的概率为1/2.因为X和Y是相互独立的,且服从相同的分布,联合密度是边缘密度之积,由对称性可得X<Y的概率一定是1/2.当然X>Y的概率也是
x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)
(1)由已知,f(x)=1,(0
密度函数f(x)=1,0
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
∫[0,2]1/2dx∫[0,2]1/2*e^(-y/2)dy=1/4∫[0,2]∫[0,2]e^(-y/2)dxdy再问:e^(-y)?再答:没有啦,搞错上限了∫[0,x]1/2dx∫[0,y]1/
相互独立且服从参数为λ1,λ2的泊松分布
X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答
D(2X-3Y)=4*D(X)+9*D(Y)D(X)=n*p*q=100*0.2*0.8=16D(Y)=λ=3所求为64+27=91
π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=