X,Y服从正态分布,求P{X>Y}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:07:51
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
2X^2/(X^2+Y^2)服从F(1,2)所以,所求期望为F(1,2)的期望的一半.
FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z
设Y的分布函数为F(y),X的密度函数为g(x)则F(y)=P(Y
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
把正太分布化为标准正太分布就可以解决了,答案是A再问:�Ҳ���ת���������鷳���������ֱ�Ӱ���Ľ�������ͼҲ����Ŷ��ʮ�ָ�л��再答:{��x-��1��/��1}
=NORMSDIST(1.85)=NORMSINV(0.49)=NORMDIST(9,5,62,TRUE)=NORMINV(0.83,5,42)=2*TDIST(9,14,1)=TINV(0.35,1
X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X
应该是相等的再问:求计算过程再答:计算过程,,,u是对称轴,X的西格玛是4,所以,p表示小于u-西格玛的概率。同理,q表示大于u+西格玛的概率。每一个正态曲线的大于u+西格玛,u+2西格玛,u+3西格
不对,应该是p{X>=-x}=p{X
1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.
(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或
XY服从差方分布~你说的那个只能用二维分布率公式自己推了
就是满足正态分布的性质.
1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+
P{|X|>k}=0.1P{X<k}=1-P{|X|>k}/2=0.95
由X~N(2,4),得Y=(X-2)/2~N(0,1),因此P(X