X,Y服从二项分布,求COV(X,Y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:19:06
用到的是cov(x+y,z)=cov(x,z)+cov(y,z)和cov(aX,bY)=ab*cov(X,Y)【其中x,y,z为变量,a,b为常数】两者结合,你的公式可以分部写:cov(x+y,x-y
随机变量X服从参数为2的泊松分布,D(X)=2.所以cov(X,Y)=cov(X,3X-2)=cov(X,3X)=3cov(X,X)=3D(X)=6.经济数学团队帮你解答,请及时采纳.谢谢!
协方差的性质cov(X,n-X)=cov(x,n)-cov(x,x)=0-Dx=-DX
设:E{X}=a,E{Y}=b则:cov(x,y)=E{(X-a)(Y-b)}=E{XY}-ab-ab+ab=E{XY}-ab所以:cov(x,-y)=E{(X-a)(-Y+b)}=-E{XY}+ab
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
1-(1-p)^3=19/27(1-p)^3=8/27(1-p)=2/3p=1/3P{X>=1}=1-(1-p)^2=5/9
X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C
X--B(n,p)==>p(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)==>E(Y)=所有的y求和y*p(y)=所有的x求和e^(mx)*p(x)=所有的x求和e^(mx)*[C(
X--B(n,p)P(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)E(Y)=所有的y求和Σy*P(y)=所有的x求和Σe^(mx)*P(x)=所有的x求和Σe^(mx)*[C(n,x
B(n,p),EX=np,DX=np(1-p)∵E【X²】=DX+(EX)²所以E【X²】=np(1-np)+(np)²再问:连续和离散随机变量都符合这个E【X
cov(x,y)=cov(x,2x+3)=2cov(x,x)=2D(x)=2np(1-p)=2*100*0.6*(1-0.6)=48
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
若X服从二项分布B(n,p),那么Y=1-2X也服从二项分布B(n',p'),n'=1-2n,p'=p.我们知道,如果设X均值为a,方差为b,则a=np,b=npq.(q=1-p)易证,Y=1-2X的
根据二项分布的期望公式Eξ=xyE(2ξ+4)=2·Eξ+4=2xy+4
变量X服从二项分布(p,n)E(x)=npD(x)=np(1-p)np=12np(1-p)=8解得p=1/3n=36
你用类似于平方差的公式展开就可以了的,交叉项就是协方差.再问:求具体步骤,,,我也是替别人问的再答:D=9dx+4dy-2covxy再问:就这一步就ok了?有木有详细步骤?十分感谢你的回答~~~再答:
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=
这里X<2的对立事件是X≥2,但X不可能大于2,所以X≥2就是X=2.经济数学团队帮你解答,请及时采纳.
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)