x*sinx的不定积积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:57:15
此积分是一个不可能用初等函数表示的积分.也就是说,用初等手段是积不出来的,.唯一的解决办法就是把sinx展成无穷级数,然后逐项积分,其结果当然还是一个无穷级数,精度可人为指定:sinx=∑[n=1,∞
答案是0.积分后得-cosx+1/2x^2-1到1.楼上利用对称区间奇函数的积分为0的性质最快.厉害.
先把(e^x)(sinx-cosx)放到微分号d里面去,变为积分号1/2)xd(e^x)(-cosx-sinx)然后分布积分
对sinx泰勒展开,再除以x有:sinx/x=1-x^2/3!+x^4/5!+…+(-1)^(m-1)x^(2m-2)/(2m-1)!+o(1)两边求积分有:∫sinx/x·dx=[x/1-x^3/3
我不是数学专业的,不懂留数定理.下面用微积分基本公式提供一种思路,如有不对请不吝指教.原理:∫dx/(a+bcosx)=2/(a+b)*√[(a+b)/(a-b)]*arctan[√[(a-b)/(a
积分限应该告诉一下如果关于原点对称那么由1+sinx的平方分之x平方乘以sinx是奇函数,利用偶倍奇零,得原式=0再问:�Dz�����֣���ô�⣿
(x+sinx)dx/1+cosx通分=(x+sinx)(1-cosx)dx/(1+cosx)(1-cosx)=(x-xcosx+sinx-sinxcosx)dx/sin^2x分别展开.能行么,也许把
被积函数的原函数不是初等函数,所以无法使用牛顿-莱布尼兹公式.只能将被积函数展成幂级数,然后逐项积分.sinx/x=1-x²/3!+x^4/5!-x^6/7!+……再问:答案?再答:π-π^
被积函数是奇函数,积分值是0.再问:求详细步骤,谢谢了再答:没有这就是详细步奏,因为原函数是求不出的。只能利用定理:奇函数的积分值是0,任意一本高数书上都有这个结论。再答:又变题了吗?x^2*(sin
∫x^2sinxdx=-∫x^2dcosx=-x^2cosx+∫cosx*2xdx=-x^2cosx+2∫xdsinx=-x^2cosx+2xsinx-2∫sinxdx=-x^2cosx+2xsinx
分部积分法∫xsinxdx=-xcosx+∫cosxdx=-xcosx+sinx+C(C是积分常数)
=e^xsinx-∫e^xcosxdx=e^xsinx-∫cosxd(e^x)=e^xsinx-[e^xcosx-∫e^xd(cosx)]=e^xsinx-(e^xcosx∫e^xsinxdx)=e^
sinx/(sinx+cosx)=(tanxcosx)/(tanxcosx+cosx)=tanx/(tanx+1)令t=tanx,则dt=sec^2xdx=(1+tan^2x)dx=(1+t^2)dx
这个数分书上有原题呢,就是你把他等价,用用那个积分u'v=uv-积分uv',最后积分这边出来一样的,移项,完了就解出来了
要用到分部积分.因为∫(sinx)^3dx=∫((cosx)^2-1)dcosx=(cosx)^3/3-cosx所以∫x(sinx)^3dx=∫xd[(cosx)^3/3-cosx]=x[(cosx)
应该是原函数吧分别是-cosxsinx2xInx
这个积分可以用幂级数来做.因为sinx=x-x^3/3!+x^5/5!-x^7/7!+..sinx/x=1-x^2/3!+x^4/5!-x^6/7!积分,得原函数=C+x-x^3/(3*3!)+x^5
只能用数值积分解决,用matlab的quad函数计算误差在10^(-13)以内求得1.370762168154488再问:不好意思,没说清楚是估值大于什么小于什么详细步骤。谢啦再答: &nb
∫(1+cosx/x+sinx)dx1+cosx/x+sinx)dx=∫1dx+∫cosx/xdx+∫sinxdx∫1dx=x+C∫sinxdx=-cosx+C∫cosx/xdx用分部积分算设x为u,