x 3 x 4=364

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:51:07
x 3 x 4=364
1/1x2x3+1/2x3x4+1/3x4x5+.+1/11x12x13=

原式=﹙1-1/2-1/3﹚+﹙1/2-1/3-1/4﹚+﹙1/3-1/4-1/5﹚+······+﹙1/11-1/12-13/13﹚=1-1/13=12/13

1x2X3+2x3X4+3x4X5+…+7X8X9=?

一般的,有:(n-1)n(n+1)=n^3-n{n^3}求和公式:Sn=[n(n+1)/2]^2{n}求和公式:Sn=n(n+1)/21x2x3+2x3x4+3x4x5+.+7x8x9=2^3-2+3

1x2x3=6 3x4x5=60 5x6x7=210 2x3x4=24 4x5x6=120三个连续自然数(0除外)的乘积

2和3因为三个连续自然数至少有一个是偶数,且大于或等于2,所以它们的乘积一定是2的倍数三个连续自然数有一个是3的倍数,所以它们的乘积一定是3的倍数

1/1x2x3+1/2x3x4+1/3x4x5+.+1/9x10x11=

1/n(n+1)(n+2)=1/2*[1/n-2/(n+1)+1/(n+2)]原式=1/2*(1-2*1/2+1/3+1/2-2*1/3+1/4+.+1/9-2*1/10+1/11)=1/2*(1-1

1x2=1/3(1x2x3=0x1x2 ) 2x3=1/3(2x3x4-1x2x3) 3x4=1/3(3x4x5- 2x

nx(n+1)=1/3[n(n+1)(n+2)-(n-1)n(n+1)]1x2+2x3+3x4+...+nx(n+1)=1/3[1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+

1x2=1|3(1x2x3-0x1x2) 2x3=1|3(2x3x4-1x2x3) 3x4=1|3(3x4x5-2x3x

3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1

1x2x3+2x3x4+3x4x5+...+7x8x9=,

因为1x2x3=(1x2x3×4-0x1x2×3)/42x3x4=(2x3x4×5-1x2x3×4)/4.7x8x9=(7x8x9×10-6x7x8x9)/4所以1x2x3+2x3x4+3x4x5+…

根号[(1x2x3+2x4x6+...+nx2nx3n)/(1x3x4+2x6x8+...+nx3nx4n))=?

1x2x3/1x3x4=2x4x6/2x6x8=------=nx2nx3n/nx3nx4n=1/2[(1x2x3+2x4x6+...+nx2nx3n)/(1x3x4+2x6x8+...+nx3nx4

1x2x3+2x3x4+3x4x5+4x5x6+...+n(n+1)(n+2)=

原式=1/4(-0*1*2*3+1*2*3*4)+1/4(-1*2*3*4+2*3*4*5)+……+1/4[-(n-1)n(n+1)(n+2)+n(n+1)(n+2)(n+3)]=1/4[-0*1*2

1/2x3x4+1/3x4x5+1/4x5x6+……+1/48x49x50=

裂项求和1/((n-1)n(n+1))=(1/2)*(1/((n-1)n)-1/(n(n+1)))接着便可算了结果我算的是(1/2)*(1/6-1/(49*50))

请1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6=

=1/2×(1/1×2-1/2×3+1/2×3-1/3×4+1/3×4-1/4×5+1/4×5-1/5×6)=1/2×(1/1×2-1/5×6)=7/30

1/(1x2x3)+1/(2x3x4)+1/(3x4x5)+.1/(20x21x22)=?

1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+.1/(20*21*22)=1/2[1/1*2-1/2*3]+1/2[1/2*3-1/3*4]+1/2[1/3*4-1/4*5]+...+1

数学简便计算1/1x2x3+1/2x3x4+1/3x4x5……+1/20x21x22=?

1/1×2×3=1/2×(1/1×2-1/2×3)其他以此类推所以原式=1/2×(1/1×2-1/2×3+1/2×3-1/3×4+……+1/20×21-1/21×22)=1/2×(1/1×2-1/21

1/1x2x3+1/2x3x4+1/3x4x5+.1/98x99x100=

1/1x2x3+1/2x3x4+1/3x4x5+.1/98x99x100==1/2[1/1*2-1/2*3]+1/2[1/2*3-1/3*4]+1/2[1/3*4-1/4*5]+...+1/2[1/9

1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6+.+1/48x49x50=

1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6+.+1/48x49x50=48*51÷(4*49*50)=306/1225

1/(1x2x3)+1/(2x3x4)+1/(3x4x5)+.1/(nx(n+1)x(n+2)=?

=1/2×[1/1×2-1/2×3+1/2×3-1/3×4+……+1/n(n+1)-1/(n+1)(n+2)]=1/2×[1/1×2-1/(n+1)(n+2)]=1/4-2/(4n²+12n